論文の概要: FANToM: A Benchmark for Stress-testing Machine Theory of Mind in
Interactions
- arxiv url: http://arxiv.org/abs/2310.15421v2
- Date: Wed, 25 Oct 2023 06:46:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 10:52:46.238985
- Title: FANToM: A Benchmark for Stress-testing Machine Theory of Mind in
Interactions
- Title(参考訳): FANToM: インタラクションにおける心のストレステストマシン理論のベンチマーク
- Authors: Hyunwoo Kim, Melanie Sclar, Xuhui Zhou, Ronan Le Bras, Gunhee Kim,
Yejin Choi, Maarten Sap
- Abstract要約: 現在、マインド評価の理論は、本質的に相互作用性に欠ける受動的物語を用いたテストモデルに焦点を当てている。
本稿では,情報非対称な会話文脈におけるToMのストレステストを目的とした新しいベンチマークであるFANToMを紹介する。
- 参考スコア(独自算出の注目度): 94.61530480991627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Theory of mind (ToM) evaluations currently focus on testing models using
passive narratives that inherently lack interactivity. We introduce FANToM, a
new benchmark designed to stress-test ToM within information-asymmetric
conversational contexts via question answering. Our benchmark draws upon
important theoretical requisites from psychology and necessary empirical
considerations when evaluating large language models (LLMs). In particular, we
formulate multiple types of questions that demand the same underlying reasoning
to identify illusory or false sense of ToM capabilities in LLMs. We show that
FANToM is challenging for state-of-the-art LLMs, which perform significantly
worse than humans even with chain-of-thought reasoning or fine-tuning.
- Abstract(参考訳): 心の理論(ToM)評価は、相互作用性に本質的に欠ける受動的物語を用いたテストモデルに焦点を当てている。
本稿では,情報非対称な会話文脈におけるToMのストレステストを目的とした新しいベンチマークであるFANToMを紹介する。
本ベンチマークは,大規模言語モデル(llm)の評価において,心理学から重要な理論的要件と必要な経験的考察を導出する。
特に,LLMにおける視覚的・虚偽のToM能力を識別するために,同じ推論を要求される複数の質問を定式化する。
FANToMは、チェーン・オブ・シークレット・推論や微調整でさえも、人間よりもはるかにパフォーマンスが悪く、最先端のLLMでは困難であることを示す。
関連論文リスト
- Perceptions to Beliefs: Exploring Precursory Inferences for Theory of Mind in Large Language Models [51.91448005607405]
ToMi と FANToM に文字認識を付加することにより,ヒト ToM 前駆体の評価を行った。
本稿では,LLMの強い知覚推定能力を利用した新しいToM手法であるPercepToMについて述べる。
論文 参考訳(メタデータ) (2024-07-08T14:58:29Z) - NegotiationToM: A Benchmark for Stress-testing Machine Theory of Mind on Negotiation Surrounding [55.38254464415964]
現在、マインド評価の理論は、機械生成データやゲーム設定を用いたテストモデルに焦点を合わせており、ショートカットや素早い相関が生じる傾向にある。
我々は,多次元精神状態を取り巻く実世界の交渉において,ストレステストマシンToMのための新しいベンチマークであるNegotiationToMを紹介する。
論文 参考訳(メタデータ) (2024-04-21T11:51:13Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
大規模マルチモーダルモデルに反現実的思考を組み込む新しい手法である反現実的インセプションを提案する。
我々は、より広い文脈のシーン理解にまたがる応答をモデルが関与し、生成することを目指している。
オープンソースモデルとプロプライエタリモデルの両方を含む様々なLMMの包括的分析は、反事実的思考が幻覚を著しく減少させることを裏付ける。
論文 参考訳(メタデータ) (2024-03-20T11:27:20Z) - Think Twice: Perspective-Taking Improves Large Language Models'
Theory-of-Mind Capabilities [63.90227161974381]
SimToMは、シミュレーション理論の視点取りの概念にインスパイアされた、新しいプロンプトフレームワークである。
我々のアプローチは、追加のトレーニングや最小限のプロンプトチューニングを必要とせず、既存の手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-16T22:49:27Z) - Towards A Holistic Landscape of Situated Theory of Mind in Large
Language Models [14.491223187047378]
大言語モデル(LLM)は、心の理論(ToM)の出現の可能性について、かなりの関心と議論を巻き起こしている。
最近のいくつかの調査では、これらのモデルに堅牢なToMが欠如していることが判明し、新しいベンチマークの開発に対する需要が高まっている。
マシンToMを7つのメンタルステートカテゴリに分類し、既存のベンチマークをデライン化して、探索されていないToMの側面を特定します。
論文 参考訳(メタデータ) (2023-10-30T15:12:09Z) - HI-TOM: A Benchmark for Evaluating Higher-Order Theory of Mind Reasoning
in Large Language Models [31.831042765744204]
心の理論(りょうがく、英: Theory of Mind、ToM)とは、自己と他者の精神状態について考える能力である。
本稿では,高次マインド理論のベンチマークであるHI-TOMを紹介する。
各種Large Language Models (LLM) を用いた実験により,高次ToMタスクの性能低下が示唆された。
論文 参考訳(メタデータ) (2023-10-25T16:41:15Z) - Clever Hans or Neural Theory of Mind? Stress Testing Social Reasoning in
Large Language Models [82.50173296858377]
多くの逸話例は、ChatGPTやGPT-4のような新しい大規模言語モデル(LLM)が、N-ToM(Neural Theory-of-Mind)を示すことを示唆するために使用された。
我々は,LLMsのN-ToMの範囲を6つのタスクに対して広範囲に評価することにより検討し,LLMsが特定のN-ToM能力を示す一方で,この挙動は堅牢性には程遠いことを見出した。
論文 参考訳(メタデータ) (2023-05-24T06:14:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。