Beyond Sentiment: Leveraging Topic Metrics for Political Stance
Classification
- URL: http://arxiv.org/abs/2310.15429v1
- Date: Tue, 24 Oct 2023 00:50:33 GMT
- Title: Beyond Sentiment: Leveraging Topic Metrics for Political Stance
Classification
- Authors: Weihong Qi
- Abstract summary: This study introduces topic metrics, dummy variables converted from extracted topics, as both an alternative and complement to sentiment metrics in stance classification.
The experiment results show that BERTopic improves coherence scores by 17.07% to 54.20% when compared to traditional approaches.
Our findings suggest topic metrics are especially effective for context-rich texts and corpus where stance and sentiment correlations are weak.
- Score: 1.0878040851638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentiment analysis, widely critiqued for capturing merely the overall tone of
a corpus, falls short in accurately reflecting the latent structures and
political stances within texts. This study introduces topic metrics, dummy
variables converted from extracted topics, as both an alternative and
complement to sentiment metrics in stance classification. By employing three
datasets identified by Bestvater and Monroe (2023), this study demonstrates
BERTopic's proficiency in extracting coherent topics and the effectiveness of
topic metrics in stance classification. The experiment results show that
BERTopic improves coherence scores by 17.07% to 54.20% when compared to
traditional approaches such as Dirichlet Allocation (LDA) and Non-negative
Matrix Factorization (NMF), prevalent in earlier political science research.
Additionally, our results indicate topic metrics outperform sentiment metrics
in stance classification, increasing performance by as much as 18.95%. Our
findings suggest topic metrics are especially effective for context-rich texts
and corpus where stance and sentiment correlations are weak. The combination of
sentiment and topic metrics achieve an optimal performance in most of the
scenarios and can further address the limitations of relying solely on
sentiment as well as the low coherence score of topic metrics.
Related papers
- Towards Fine-Grained Citation Evaluation in Generated Text: A Comparative Analysis of Faithfulness Metrics [22.041561519672456]
Large language models (LLMs) often produce unsupported or unverifiable content, known as "hallucinations"
We propose a comparative evaluation framework that assesses the metric effectiveness in distinguishing citations between three-category support levels.
Our results show no single metric consistently excels across all evaluations, revealing the complexity of assessing fine-grained support.
arXiv Detail & Related papers (2024-06-21T15:57:24Z) - Evaluating the IWSLT2023 Speech Translation Tasks: Human Annotations, Automatic Metrics, and Segmentation [50.60733773088296]
We conduct a comprehensive human evaluation of the results of several shared tasks from the last International Workshop on Spoken Language Translation (IWSLT 2023)
We propose an effective evaluation strategy based on automatic resegmentation and direct assessment with segment context.
Our analysis revealed that: 1) the proposed evaluation strategy is robust and scores well-correlated with other types of human judgements; 2) automatic metrics are usually, but not always, well-correlated with direct assessment scores; and 3) COMET as a slightly stronger automatic metric than chrF.
arXiv Detail & Related papers (2024-06-06T09:18:42Z) - BBScore: A Brownian Bridge Based Metric for Assessing Text Coherence [20.507596002357655]
Coherent texts inherently manifest a sequential and cohesive interplay among sentences.
BBScore is a reference-free metric grounded in Brownian bridge theory for assessing text coherence.
arXiv Detail & Related papers (2023-12-28T08:34:17Z) - On the Intrinsic and Extrinsic Fairness Evaluation Metrics for
Contextualized Language Representations [74.70957445600936]
Multiple metrics have been introduced to measure fairness in various natural language processing tasks.
These metrics can be roughly categorized into two categories: 1) emphextrinsic metrics for evaluating fairness in downstream applications and 2) emphintrinsic metrics for estimating fairness in upstream language representation models.
arXiv Detail & Related papers (2022-03-25T22:17:43Z) - SMURF: SeMantic and linguistic UndeRstanding Fusion for Caption
Evaluation via Typicality Analysis [20.026835809227283]
We introduce "typicality", a new formulation of evaluation rooted in information theory.
We show how these decomposed dimensions of semantics and fluency provide greater system-level insight into captioner differences.
Our proposed metrics along with their combination, SMURF, achieve state-of-the-art correlation with human judgment when compared with other rule-based evaluation metrics.
arXiv Detail & Related papers (2021-06-02T19:58:20Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
Data management research is showing an increasing presence and interest in topics related to data and algorithmic fairness.
We contribute a broad analysis of 13 fair classification approaches and additional variants, over their correctness, fairness, efficiency, scalability, and stability.
Our analysis highlights novel insights on the impact of different metrics and high-level approach characteristics on different aspects of performance.
arXiv Detail & Related papers (2021-01-18T22:55:40Z) - LCEval: Learned Composite Metric for Caption Evaluation [37.2313913156926]
We propose a neural network-based learned metric to improve the caption-level caption evaluation.
This paper investigates the relationship between different linguistic features and the caption-level correlation of the learned metrics.
Our proposed metric not only outperforms the existing metrics in terms of caption-level correlation but it also shows a strong system-level correlation against human assessments.
arXiv Detail & Related papers (2020-12-24T06:38:24Z) - GO FIGURE: A Meta Evaluation of Factuality in Summarization [131.1087461486504]
We introduce GO FIGURE, a meta-evaluation framework for evaluating factuality evaluation metrics.
Our benchmark analysis on ten factuality metrics reveals that our framework provides a robust and efficient evaluation.
It also reveals that while QA metrics generally improve over standard metrics that measure factuality across domains, performance is highly dependent on the way in which questions are generated.
arXiv Detail & Related papers (2020-10-24T08:30:20Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z) - A computational model implementing subjectivity with the 'Room Theory'.
The case of detecting Emotion from Text [68.8204255655161]
This work introduces a new method to consider subjectivity and general context dependency in text analysis.
By using similarity measure between words, we are able to extract the relative relevance of the elements in the benchmark.
This method could be applied to all the cases where evaluating subjectivity is relevant to understand the relative value or meaning of a text.
arXiv Detail & Related papers (2020-05-12T21:26:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.