PET Synthesis via Self-supervised Adaptive Residual Estimation
Generative Adversarial Network
- URL: http://arxiv.org/abs/2310.15550v1
- Date: Tue, 24 Oct 2023 06:43:56 GMT
- Title: PET Synthesis via Self-supervised Adaptive Residual Estimation
Generative Adversarial Network
- Authors: Yuxin Xue, Lei Bi, Yige Peng, Michael Fulham, David Dagan Feng, Jinman
Kim
- Abstract summary: Recent methods to generate high-quality PET images from low-dose counterparts have been reported to be state-of-the-art for low-to-high image recovery methods.
To address these issues, we developed a self-supervised adaptive residual estimation generative adversarial network (SS-AEGAN)
SS-AEGAN consistently outperformed the state-of-the-art synthesis methods with various dose reduction factors.
- Score: 14.381830012670969
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Positron emission tomography (PET) is a widely used, highly sensitive
molecular imaging in clinical diagnosis. There is interest in reducing the
radiation exposure from PET but also maintaining adequate image quality. Recent
methods using convolutional neural networks (CNNs) to generate synthesized
high-quality PET images from low-dose counterparts have been reported to be
state-of-the-art for low-to-high image recovery methods. However, these methods
are prone to exhibiting discrepancies in texture and structure between
synthesized and real images. Furthermore, the distribution shift between
low-dose PET and standard PET has not been fully investigated. To address these
issues, we developed a self-supervised adaptive residual estimation generative
adversarial network (SS-AEGAN). We introduce (1) An adaptive residual
estimation mapping mechanism, AE-Net, designed to dynamically rectify the
preliminary synthesized PET images by taking the residual map between the
low-dose PET and synthesized output as the input, and (2) A self-supervised
pre-training strategy to enhance the feature representation of the coarse
generator. Our experiments with a public benchmark dataset of total-body PET
images show that SS-AEGAN consistently outperformed the state-of-the-art
synthesis methods with various dose reduction factors.
Related papers
- Diffusion Transformer Model With Compact Prior for Low-dose PET Reconstruction [7.320877150436869]
We propose a diffusion transformer model (DTM) guided by joint compact prior (JCP) to enhance the reconstruction quality of low-dose PET imaging.
DTM combines the powerful distribution mapping abilities of diffusion models with the capacity of transformers to capture long-range dependencies.
Our approach not only reduces radiation exposure risks but also provides a more reliable PET imaging tool for early disease detection and patient management.
arXiv Detail & Related papers (2024-07-01T03:54:43Z) - Two-Phase Multi-Dose-Level PET Image Reconstruction with Dose Level Awareness [43.45142393436787]
We design a novel two-phase multi-dose-level PET reconstruction algorithm with dose level awareness.
The pre-training phase is devised to explore both fine-grained discriminative features and effective semantic representation.
The SPET prediction phase adopts a coarse prediction network utilizing pre-learned dose level prior to generate preliminary result.
arXiv Detail & Related papers (2024-04-02T01:57:08Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
Two main challenges for these approaches are the accurate prediction of contrast enhancement and the synthesis of realistic images.
We address both challenges by utilizing the contrast signal encoded in the subtraction images of pre-contrast and post-contrast image pairs.
We demonstrate the effectiveness of our approach on synthetic and real datasets using various scanners, field strengths, and contrast agents.
arXiv Detail & Related papers (2024-03-06T08:35:29Z) - Image2Points:A 3D Point-based Context Clusters GAN for High-Quality PET
Image Reconstruction [47.398304117228584]
We propose a 3D point-based context clusters GAN, namely PCC-GAN, to reconstruct high-quality SPET images from LPET.
Experiments on both clinical and phantom datasets demonstrate that our PCC-GAN outperforms the state-of-the-art reconstruction methods.
arXiv Detail & Related papers (2024-02-01T06:47:56Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - TriDo-Former: A Triple-Domain Transformer for Direct PET Reconstruction
from Low-Dose Sinograms [45.24575167909925]
TriDoFormer is a transformer-based model that unites triple domains of sinogram, image, and frequency for direct reconstruction.
It outperforms state-of-the-art methods qualitatively and quantitatively.
GFP serves as a learnable frequency filter that adjusts the frequency components in the frequency domain, enforcing the network to restore high-frequency details.
arXiv Detail & Related papers (2023-08-10T06:20:00Z) - CG-3DSRGAN: A classification guided 3D generative adversarial network
for image quality recovery from low-dose PET images [10.994223928445589]
High radioactivity caused by the injected tracer dose is a major concern in PET imaging.
Reducing the dose leads to inadequate image quality for diagnostic practice.
CNNs-based methods have been developed for high quality PET synthesis from its low-dose counterparts.
arXiv Detail & Related papers (2023-04-03T05:39:02Z) - Self-Supervised Pre-Training for Deep Image Prior-Based Robust PET Image
Denoising [0.5999777817331317]
Deep image prior (DIP) has been successfully applied to positron emission tomography (PET) image restoration.
We propose a self-supervised pre-training model to improve the DIP-based PET image denoising performance.
arXiv Detail & Related papers (2023-02-27T06:55:00Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.