Posterior-Mean Denoising Diffusion Model for Realistic PET Image Reconstruction
- URL: http://arxiv.org/abs/2503.08546v1
- Date: Tue, 11 Mar 2025 15:33:50 GMT
- Title: Posterior-Mean Denoising Diffusion Model for Realistic PET Image Reconstruction
- Authors: Yiran Sun, Osama Mawlawi,
- Abstract summary: Posterior-Mean Denoising Diffusion Model (PMDM-PET) is a novel approach that builds upon a recently established mathematical theory.<n>PMDM-PET first obtained posterior-mean PET predictions under minimum mean square error (MSE), then optimally transports the distribution of them to the ground-truth PET images distribution.<n> Experimental results demonstrate that PMDM-PET not only generates realistic PET images with possible minimum distortion and optimal perceptual quality but also outperforms five recent state-of-the-art (SOTA) DL baselines in both qualitative visual inspection and quantitative pixel-wise metrics.
- Score: 0.7366405857677227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Positron Emission Tomography (PET) is a functional imaging modality that enables the visualization of biochemical and physiological processes across various tissues. Recently, deep learning (DL)-based methods have demonstrated significant progress in directly mapping sinograms to PET images. However, regression-based DL models often yield overly smoothed reconstructions lacking of details (i.e., low distortion, low perceptual quality), whereas GAN-based and likelihood-based posterior sampling models tend to introduce undesirable artifacts in predictions (i.e., high distortion, high perceptual quality), limiting their clinical applicability. To achieve a robust perception-distortion tradeoff, we propose Posterior-Mean Denoising Diffusion Model (PMDM-PET), a novel approach that builds upon a recently established mathematical theory to explore the closed-form expression of perception-distortion function in diffusion model space for PET image reconstruction from sinograms. Specifically, PMDM-PET first obtained posterior-mean PET predictions under minimum mean square error (MSE), then optimally transports the distribution of them to the ground-truth PET images distribution. Experimental results demonstrate that PMDM-PET not only generates realistic PET images with possible minimum distortion and optimal perceptual quality but also outperforms five recent state-of-the-art (SOTA) DL baselines in both qualitative visual inspection and quantitative pixel-wise metrics PSNR (dB)/SSIM/NRMSE.
Related papers
- End-to-end Triple-domain PET Enhancement: A Hybrid Denoising-and-reconstruction Framework for Reconstructing Standard-dose PET Images from Low-dose PET Sinograms [43.13562515963306]
We propose an end-to-end TriPle-domain LPET EnhancemenT (TriPLET) framework to reconstruct standard-dose PET images from low-dose PET sinograms.<n>Our proposed TriPLET can reconstruct SPET images with the highest similarity and signal-to-noise ratio to real data, compared with state-of-the-art methods.
arXiv Detail & Related papers (2024-12-04T14:47:27Z) - Diffusion Transformer Model With Compact Prior for Low-dose PET Reconstruction [7.320877150436869]
We propose a diffusion transformer model (DTM) guided by joint compact prior (JCP) to enhance the reconstruction quality of low-dose PET imaging.
DTM combines the powerful distribution mapping abilities of diffusion models with the capacity of transformers to capture long-range dependencies.
Our approach not only reduces radiation exposure risks but also provides a more reliable PET imaging tool for early disease detection and patient management.
arXiv Detail & Related papers (2024-07-01T03:54:43Z) - Two-Phase Multi-Dose-Level PET Image Reconstruction with Dose Level Awareness [43.45142393436787]
We design a novel two-phase multi-dose-level PET reconstruction algorithm with dose level awareness.
The pre-training phase is devised to explore both fine-grained discriminative features and effective semantic representation.
The SPET prediction phase adopts a coarse prediction network utilizing pre-learned dose level prior to generate preliminary result.
arXiv Detail & Related papers (2024-04-02T01:57:08Z) - Image2Points:A 3D Point-based Context Clusters GAN for High-Quality PET
Image Reconstruction [47.398304117228584]
We propose a 3D point-based context clusters GAN, namely PCC-GAN, to reconstruct high-quality SPET images from LPET.
Experiments on both clinical and phantom datasets demonstrate that our PCC-GAN outperforms the state-of-the-art reconstruction methods.
arXiv Detail & Related papers (2024-02-01T06:47:56Z) - PET Synthesis via Self-supervised Adaptive Residual Estimation
Generative Adversarial Network [14.381830012670969]
Recent methods to generate high-quality PET images from low-dose counterparts have been reported to be state-of-the-art for low-to-high image recovery methods.
To address these issues, we developed a self-supervised adaptive residual estimation generative adversarial network (SS-AEGAN)
SS-AEGAN consistently outperformed the state-of-the-art synthesis methods with various dose reduction factors.
arXiv Detail & Related papers (2023-10-24T06:43:56Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Self-Supervised Pre-Training for Deep Image Prior-Based Robust PET Image
Denoising [0.5999777817331317]
Deep image prior (DIP) has been successfully applied to positron emission tomography (PET) image restoration.
We propose a self-supervised pre-training model to improve the DIP-based PET image denoising performance.
arXiv Detail & Related papers (2023-02-27T06:55:00Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.