Nighttime Thermal Infrared Image Colorization with Feedback-based Object
Appearance Learning
- URL: http://arxiv.org/abs/2310.15688v1
- Date: Tue, 24 Oct 2023 09:59:55 GMT
- Title: Nighttime Thermal Infrared Image Colorization with Feedback-based Object
Appearance Learning
- Authors: Fu-Ya Luo, Shu-Lin Liu, Yi-Jun Cao, Kai-Fu Yang, Chang-Yong Xie, Yong
Liu, Yong-Jie Li
- Abstract summary: We propose a generative adversarial network incorporating feedback-based object appearance learning (FoalGAN)
FoalGAN is effective for appearance learning of small objects, but also outperforms other image translation methods in terms of semantic preservation and edge consistency.
- Score: 27.58748298687474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stable imaging in adverse environments (e.g., total darkness) makes thermal
infrared (TIR) cameras a prevalent option for night scene perception. However,
the low contrast and lack of chromaticity of TIR images are detrimental to
human interpretation and subsequent deployment of RGB-based vision algorithms.
Therefore, it makes sense to colorize the nighttime TIR images by translating
them into the corresponding daytime color images (NTIR2DC). Despite the
impressive progress made in the NTIR2DC task, how to improve the translation
performance of small object classes is under-explored. To address this problem,
we propose a generative adversarial network incorporating feedback-based object
appearance learning (FoalGAN). Specifically, an occlusion-aware mixup module
and corresponding appearance consistency loss are proposed to reduce the
context dependence of object translation. As a representative example of small
objects in nighttime street scenes, we illustrate how to enhance the realism of
traffic light by designing a traffic light appearance loss. To further improve
the appearance learning of small objects, we devise a dual feedback learning
strategy to selectively adjust the learning frequency of different samples. In
addition, we provide pixel-level annotation for a subset of the Brno dataset,
which can facilitate the research of NTIR image understanding under multiple
weather conditions. Extensive experiments illustrate that the proposed FoalGAN
is not only effective for appearance learning of small objects, but also
outperforms other image translation methods in terms of semantic preservation
and edge consistency for the NTIR2DC task.
Related papers
- You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement [50.37253008333166]
Low-Light Image Enhancement (LLIE) task tends to restore the details and visual information from corrupted low-light images.
We propose a novel trainable color space, named Horizontal/Vertical-Intensity (HVI)
It not only decouples brightness and color from RGB channels to mitigate the instability during enhancement but also adapts to low-light images in different illumination ranges due to the trainable parameters.
arXiv Detail & Related papers (2024-02-08T16:47:43Z) - Disentangled Contrastive Image Translation for Nighttime Surveillance [87.03178320662592]
Nighttime surveillance suffers from degradation due to poor illumination and arduous human annotations.
Existing methods rely on multi-spectral images to perceive objects in the dark, which are troubled by low resolution and color absence.
We argue that the ultimate solution for nighttime surveillance is night-to-day translation, or Night2Day.
This paper contributes a new surveillance dataset called NightSuR. It includes six scenes to support the study on nighttime surveillance.
arXiv Detail & Related papers (2023-07-11T06:40:27Z) - Enhancing Low-Light Images Using Infrared-Encoded Images [81.8710581927427]
Previous arts mainly focus on the low-light images captured in the visible spectrum using pixel-wise loss.
We propose a novel approach to increase the visibility of images captured under low-light environments by removing the in-camera infrared (IR) cut-off filter.
arXiv Detail & Related papers (2023-07-09T08:29:19Z) - StawGAN: Structural-Aware Generative Adversarial Networks for Infrared
Image Translation [7.098759778181621]
We introduce a novel model that focuses on enhancing the quality of the target generation without merely colorizing it.
We test our model on aerial images of the DroneVeichle dataset containing RGB-IR paired images.
arXiv Detail & Related papers (2023-05-18T11:22:33Z) - Edge-guided Multi-domain RGB-to-TIR image Translation for Training
Vision Tasks with Challenging Labels [12.701191873813583]
The insufficient number of annotated thermal infrared (TIR) image datasets hinders TIR image-based deep learning networks to have comparable performances to that of RGB.
We propose a modified multidomain RGB to TIR image translation model focused on edge preservation to employ annotated RGB images with challenging labels.
We have enabled the supervised learning of deep TIR image-based optical flow estimation and object detection that ameliorated in end point error by 56.5% on average and the best object detection mAP of 23.9% respectively.
arXiv Detail & Related papers (2023-01-30T06:44:38Z) - Memory-Guided Collaborative Attention for Nighttime Thermal Infrared
Image Colorization [14.239472686466325]
We propose a novel learning framework called Memory-guided cOllaboRative atteNtion Generative Adversarial Network (MornGAN)
MornGAN is inspired by the analogical reasoning mechanisms of humans.
It significantly outperforms other image-to-image translation methods in terms of semantic preservation and edge consistency.
arXiv Detail & Related papers (2022-08-05T03:04:04Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
We propose a new low-light image enhancement dataset consisting of misaligned training images with real-world corruptions.
Our model achieves state-of-the-art performances on both the newly proposed dataset and other popular low-light datasets.
arXiv Detail & Related papers (2022-01-10T03:12:52Z) - Object-aware Contrastive Learning for Debiased Scene Representation [74.30741492814327]
We develop a novel object-aware contrastive learning framework that localizes objects in a self-supervised manner.
We also introduce two data augmentations based on ContraCAM, object-aware random crop and background mixup, which reduce contextual and background biases during contrastive self-supervised learning.
arXiv Detail & Related papers (2021-07-30T19:24:07Z) - Thermal Infrared Image Colorization for Nighttime Driving Scenes with
Top-Down Guided Attention [14.527765677864913]
We propose a toP-down attEntion And gRadient aLignment based GAN, referred to as PearlGAN.
A top-down guided attention module and an elaborate attentional loss are first designed to reduce the semantic encoding ambiguity during translation.
In addition, pixel-level annotation is carried out on a subset of FLIR and KAIST datasets to evaluate the semantic preservation performance of multiple translation methods.
arXiv Detail & Related papers (2021-04-29T14:35:25Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
We investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps.
Inspired by the color image formulation, we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color.
Our proposed method has surpassed the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18% in mAP on ExDark dataset.
arXiv Detail & Related papers (2021-03-19T04:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.