Analyzing User Characteristics of Hate Speech Spreaders on Social Media
- URL: http://arxiv.org/abs/2310.15772v2
- Date: Mon, 29 Jul 2024 14:40:55 GMT
- Title: Analyzing User Characteristics of Hate Speech Spreaders on Social Media
- Authors: Dominique Geissler, Abdurahman Maarouf, Stefan Feuerriegel,
- Abstract summary: We analyze the role of user characteristics in hate speech resharing across different types of hate speech.
We find that users with little social influence tend to share more hate speech.
Political anti-Trump and anti-right-wing hate is reshared by users with larger social influence.
- Score: 20.57872238271025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hate speech on social media threatens the mental and physical well-being of individuals and contributes to real-world violence. Resharing is an important driver behind the spread of hate speech on social media. Yet, little is known about who reshares hate speech and what their characteristics are. In this paper, we analyze the role of user characteristics in hate speech resharing across different types of hate speech (e.g., political hate). For this, we proceed as follows: First, we cluster hate speech posts using large language models to identify different types of hate speech. Then we model the effects of user attributes on users' probability to reshare hate speech using an explainable machine learning model. To do so, we apply debiasing to control for selection bias in our observational social media data and further control for the latent vulnerability of users to hate speech. We find that, all else equal, users with fewer followers, fewer friends, fewer posts, and older accounts share more hate speech. This shows that users with little social influence tend to share more hate speech. Further, we find substantial heterogeneity across different types of hate speech. For example, racist and misogynistic hate is spread mostly by users with little social influence. In contrast, political anti-Trump and anti-right-wing hate is reshared by users with larger social influence. Overall, understanding the factors that drive users to share hate speech is crucial for detecting individuals at risk of engaging in harmful behavior and for designing effective mitigation strategies.
Related papers
- ProvocationProbe: Instigating Hate Speech Dataset from Twitter [0.39052860539161904]
textitProvocationProbe is a dataset designed to explore what distinguishes instigating hate speech from general hate speech.
For this study, we collected around twenty thousand tweets from Twitter, encompassing a total of nine global controversies.
arXiv Detail & Related papers (2024-10-25T16:57:59Z) - Hostile Counterspeech Drives Users From Hate Subreddits [1.5035331281822]
We analyze the effect of counterspeech on newcomers within hate subreddits on Reddit.
Non-hostile counterspeech is ineffective at keeping users from fully disengaging from these hate subreddits.
A single hostile counterspeech comment substantially reduces both future likelihood of engagement.
arXiv Detail & Related papers (2024-05-28T17:12:41Z) - An Investigation of Large Language Models for Real-World Hate Speech
Detection [46.15140831710683]
A major limitation of existing methods is that hate speech detection is a highly contextual problem.
Recently, large language models (LLMs) have demonstrated state-of-the-art performance in several natural language tasks.
Our study reveals that a meticulously crafted reasoning prompt can effectively capture the context of hate speech.
arXiv Detail & Related papers (2024-01-07T00:39:33Z) - On the rise of fear speech in online social media [7.090807766284268]
Fear speech, as the name suggests, attempts to incite fear about a target community.
This article presents a large-scale study to understand the prevalence of 400K fear speech and over 700K hate speech posts collected from Gab.com.
arXiv Detail & Related papers (2023-03-18T02:46:49Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSyn is a context-synergized neural network that explicitly incorporates user- and conversational context for detecting implicit hate speech in online conversations.
We show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 1.24% - 57.8%.
arXiv Detail & Related papers (2023-03-02T17:30:43Z) - Quantifying How Hateful Communities Radicalize Online Users [2.378428291297535]
We measure the impact of joining fringe hateful communities in terms of hate speech propagated to the rest of the social network.
We use data from Reddit to assess the effect of joining one type of echo chamber: a digital community of like-minded users exhibiting hateful behavior.
We show that the harmful speech does not remain contained within the community.
arXiv Detail & Related papers (2022-09-19T01:13:29Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - Nipping in the Bud: Detection, Diffusion and Mitigation of Hate Speech
on Social Media [21.47216483704825]
This article presents methodological challenges that hinder building automated hate mitigation systems.
We discuss a series of our proposed solutions to limit the spread of hate speech on social media.
arXiv Detail & Related papers (2022-01-04T03:44:46Z) - Annotators with Attitudes: How Annotator Beliefs And Identities Bias
Toxic Language Detection [75.54119209776894]
We investigate the effect of annotator identities (who) and beliefs (why) on toxic language annotations.
We consider posts with three characteristics: anti-Black language, African American English dialect, and vulgarity.
Our results show strong associations between annotator identity and beliefs and their ratings of toxicity.
arXiv Detail & Related papers (2021-11-15T18:58:20Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
COVID-19 has sparked racism and hate on social media targeted towards Asian communities.
We study the evolution and spread of anti-Asian hate speech through the lens of Twitter.
We create COVID-HATE, the largest dataset of anti-Asian hate and counterspeech spanning 14 months.
arXiv Detail & Related papers (2020-05-25T21:58:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.