論文の概要: Amortised Inference in Neural Networks for Small-Scale Probabilistic
Meta-Learning
- arxiv url: http://arxiv.org/abs/2310.15786v1
- Date: Tue, 24 Oct 2023 12:34:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 18:49:34.955429
- Title: Amortised Inference in Neural Networks for Small-Scale Probabilistic
Meta-Learning
- Title(参考訳): 小規模確率メタラーニングのためのニューラルネットワークの償却推論
- Authors: Matthew Ashman, Tommy Rochussen and Adrian Weller
- Abstract要約: BNNに対する大域的変分近似は、一連の条件分布を構成するために一連のインジェクションインプットを使用する。
我々の重要な洞察は、これらのインプットを実際のデータに置き換えることができ、変動分布は各データポイントに対して近似的な確率の集合からなることである。
この推論ネットワークを関連するデータセット間でトレーニングすることにより、タスク固有のBNNに対するメタ学習ベイズ推論が可能になる。
- 参考スコア(独自算出の注目度): 41.85464593920907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The global inducing point variational approximation for BNNs is based on
using a set of inducing inputs to construct a series of conditional
distributions that accurately approximate the conditionals of the true
posterior distribution. Our key insight is that these inducing inputs can be
replaced by the actual data, such that the variational distribution consists of
a set of approximate likelihoods for each datapoint. This structure lends
itself to amortised inference, in which the parameters of each approximate
likelihood are obtained by passing each datapoint through a meta-model known as
the inference network. By training this inference network across related
datasets, we can meta-learn Bayesian inference over task-specific BNNs.
- Abstract(参考訳): BNNに対する大域的誘導点変分近似は、真の後続分布の条件を正確に近似する一連の条件分布を構築するために、一連のインジェクション入力を使用する。
我々の重要な洞察は、これらのインプットを実際のデータに置き換えることができ、変動分布は各データポイントに対して近似的な確率の集合からなることである。
この構造は、推定ネットワークとして知られるメタモデルを通して各データポイントを渡すことで、各近似近似のパラメータが得られ、アモートされた推論になる。
この推論ネットワークを関連するデータセット間でトレーニングすることにより、タスク固有のBNNに対するメタ学習ベイズ推論が可能になる。
関連論文リスト
- A Note on Bayesian Networks with Latent Root Variables [56.86503578982023]
残りの, 証明, 変数に対する限界分布もまたベイズ的ネットワークとして分解され, 経験的と呼ぶ。
マニフェスト変数の観測のデータセットにより、経験的ベイズネットのパラメータを定量化することができる。
論文 参考訳(メタデータ) (2024-02-26T23:53:34Z) - Distributed Variational Inference for Online Supervised Learning [15.038649101409804]
本稿では,スケーラブルな分散確率的推論アルゴリズムを提案する。
センサネットワークにおける連続変数、難解な後部データ、大規模リアルタイムデータに適用できる。
論文 参考訳(メタデータ) (2023-09-05T22:33:02Z) - Federated Learning as Variational Inference: A Scalable Expectation
Propagation Approach [66.9033666087719]
本稿では,推論の視点を拡張し,フェデレート学習の変分推論の定式化について述べる。
我々は、FedEPを標準フェデレーション学習ベンチマークに適用し、収束速度と精度の両方において、強いベースラインを上回ります。
論文 参考訳(メタデータ) (2023-02-08T17:58:11Z) - Memory-Based Meta-Learning on Non-Stationary Distributions [29.443692147512742]
メモリベースのメタラーニングはベイズ最適予測器を近似する手法である。
本稿では,Transformer,LSTM,RNNなどのメモリベースニューラルネットワークを用いて,ベイズ最適化アルゴリズムを正確に近似することができることを示す。
論文 参考訳(メタデータ) (2023-02-06T19:08:59Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
ベイズ構造学習では、データから有向非巡回グラフ(DAG)上の分布を推定することに興味がある。
近年,ジェネレーティブ・フロー・ネットワーク(GFlowNets)と呼ばれる確率モデルのクラスが,ジェネレーティブ・モデリングの一般的なフレームワークとして紹介されている。
DAG-GFlowNetと呼ばれる本手法は,DAGよりも後方の正確な近似を提供する。
論文 参考訳(メタデータ) (2022-02-28T15:53:10Z) - Decomposing neural networks as mappings of correlation functions [57.52754806616669]
本研究では,ディープフィードフォワードネットワークによって実装された確率分布のマッピングについて検討する。
ニューラルネットワークで使用できる異なる情報表現と同様に、データに不可欠な統計を識別する。
論文 参考訳(メタデータ) (2022-02-10T09:30:31Z) - Kalman Bayesian Neural Networks for Closed-form Online Learning [5.220940151628734]
閉形式ベイズ推論によるBNN学習のための新しい手法を提案する。
出力の予測分布の計算と重み分布の更新をベイズフィルタおよび平滑化問題として扱う。
これにより、勾配降下のないシーケンシャル/オンライン方式でネットワークパラメータをトレーニングするためのクローズドフォーム表現が可能になる。
論文 参考訳(メタデータ) (2021-10-03T07:29:57Z) - Adaptive Conformal Inference Under Distribution Shift [0.0]
本研究では,未知の方法でデータ生成分布を時間とともに変化させるオンライン環境において,予測セットを形成する手法を開発した。
我々のフレームワークは、任意のブラックボックスメソッドと組み合わせられる一般的なラッパーを提供するために、共形推論のアイデアに基づいている。
我々は,2つの実世界のデータセット上で適応型共形推論法を検証し,その予測が可視的および有意な分布シフトに対して堅牢であることを見出した。
論文 参考訳(メタデータ) (2021-06-01T01:37:32Z) - The Bayesian Method of Tensor Networks [1.7894377200944511]
ネットワークのベイズ的枠組みを2つの観点から検討する。
本研究では,2次元合成データセットにおけるモデルパラメータと決定境界を可視化することにより,ネットワークのベイズ特性について検討する。
論文 参考訳(メタデータ) (2021-01-01T14:59:15Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。