qPOTS: Efficient batch multiobjective Bayesian optimization via Pareto optimal Thompson sampling
- URL: http://arxiv.org/abs/2310.15788v2
- Date: Sun, 27 Oct 2024 17:19:33 GMT
- Title: qPOTS: Efficient batch multiobjective Bayesian optimization via Pareto optimal Thompson sampling
- Authors: S. Ashwin Renganathan, Kade E. Carlson,
- Abstract summary: A sample-efficient approach to solving multiobjective optimization is via process oracle (GP) surrogates and MOBOOTS$.
We propose a Thompson sampling (TS) based approach ($qtextttPOTS$)
$qtextttPOTS$ solves a cheap multiobjective optimization on the GP posteriors with evolutionary approaches.
- Score: 0.0
- License:
- Abstract: Classical evolutionary approaches for multiobjective optimization are quite accurate but incur a lot of queries to the objectives; this can be prohibitive when objectives are expensive oracles. A sample-efficient approach to solving multiobjective optimization is via Gaussian process (GP) surrogates and Bayesian optimization (BO). Multiobjective Bayesian optimization (MOBO) involves the construction of an acquisition function which is optimized to acquire new observation candidates sequentially. This ``inner'' optimization can be hard due to various reasons: acquisition functions being nonconvex, nondifferentiable and/or unavailable in analytical form; batch sampling usually exacerbates these problems and the success of MOBO heavily relies on this inner optimization. This, ultimately, affects their sample efficiency. To overcome these challenges, we propose a Thompson sampling (TS) based approach ($q\texttt{POTS}$). Whereas TS chooses candidates according to the probability that they are optimal, $q\texttt{POTS}$ chooses candidates according to the probability that they are Pareto optimal. Instead of a hard acquisition function optimization, $q\texttt{POTS}~$ solves a cheap multiobjective optimization on the GP posteriors with evolutionary approaches. This way we get the best of both worlds: accuracy of evolutionary approaches and sample-efficiency of MOBO. New candidates are chosen on the posterior GP Pareto frontier according to a maximin distance criterion. $q\texttt{POTS}~$ is endowed with theoretical guarantees, a natural exploration-exploitation trade-off and, superior accuracy and sample efficiency than its competitors based on synthetic as well as real-world experiments.
Related papers
- $f$-PO: Generalizing Preference Optimization with $f$-divergence Minimization [91.43730624072226]
$f$-PO is a novel framework that generalizes and extends existing approaches.
We conduct experiments on state-of-the-art language models using benchmark datasets.
arXiv Detail & Related papers (2024-10-29T02:11:45Z) - Gaussian Process Thompson Sampling via Rootfinding [2.94944680995069]
Thompson sampling (TS) is a simple, effective policy in Bayesian decision making.
In continuous optimization, the posterior of the objective function is often a Gaussian process (GP), whose sample paths have numerous local optima.
We introduce an efficient global optimization strategy for GP-TS that carefully selects starting points for gradient-based multi-starts.
arXiv Detail & Related papers (2024-10-10T16:06:45Z) - Batched Bayesian optimization with correlated candidate uncertainties [44.38372821900645]
We propose an acquisition strategy for discrete optimization motivated by pure exploitation, qPO (multipoint of Optimality)
We apply our method to the model-guided exploration of large chemical libraries and provide empirical evidence that it performs better than or on par with state-of-the-art methods in batched Bayesian optimization.
arXiv Detail & Related papers (2024-10-08T20:13:12Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Optimistic Optimization of Gaussian Process Samples [30.226274682578172]
A competing, computationally more efficient, global optimization framework is optimistic optimization, which exploits prior knowledge about the geometry of the search space in form of a dissimilarity function.
We argue that there is a new research domain between geometric and probabilistic search, i.e. methods that run drastically faster than traditional Bayesian optimization, while retaining some of the crucial functionality of Bayesian optimization.
arXiv Detail & Related papers (2022-09-02T09:06:24Z) - Dynamic Multi-objective Ensemble of Acquisition Functions in Batch
Bayesian Optimization [1.1602089225841632]
The acquisition function plays a crucial role in the optimization process.
Three acquisition functions are dynamically selected from a set based on their current and historical performance.
Using an evolutionary multi-objective algorithm to optimize such a MOP, a set of non-dominated solutions can be obtained.
arXiv Detail & Related papers (2022-06-22T14:09:18Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
We propose a novel Bayesian surrogate model to balance exploration with exploitation of the search space.
To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model.
To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret.
arXiv Detail & Related papers (2022-05-27T16:43:10Z) - $\{\text{PF}\}^2\text{ES}$: Parallel Feasible Pareto Frontier Entropy
Search for Multi-Objective Bayesian Optimization Under Unknown Constraints [4.672142224503371]
We present a novel information-theoretic acquisition function for multi-objective Bayesian optimization.
$textPF2$ES provides a low cost and accurate estimate of the mutual information for the parallel setting.
We benchmark $textPF2$ES across synthetic and real-life problems.
arXiv Detail & Related papers (2022-04-11T21:06:23Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
This paper proposes an Optimistic variant of the Proximal Policy Optimization algorithm (OPPO)
OPPO achieves $tildeO(sqrtd2 H3 T )$ regret.
To the best of our knowledge, OPPO is the first provably efficient policy optimization algorithm that explores.
arXiv Detail & Related papers (2019-12-12T08:40:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.