論文の概要: Automatic Aorta Segmentation with Heavily Augmented, High-Resolution 3-D
ResUNet: Contribution to the SEG.A Challenge
- arxiv url: http://arxiv.org/abs/2310.15827v1
- Date: Tue, 24 Oct 2023 13:28:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 18:41:38.559912
- Title: Automatic Aorta Segmentation with Heavily Augmented, High-Resolution 3-D
ResUNet: Contribution to the SEG.A Challenge
- Title(参考訳): 高度高分解能3次元ResUNetによる自動大動脈切開 : SEG.Aチャレンジへの貢献
- Authors: Marek Wodzinski and Henning M\"uller
- Abstract要約: この研究は、MICCAI 2023カンファレンスで組織されたSEGへのMedGIFTチームの貢献を示す。
ディープエンコーダ・デコーダアーキテクチャに基づく完全自動アルゴリズムを提案する。
ソースコードと事前訓練されたモデルを自由にリリースし、Grand-Challengeプラットフォーム上でアルゴリズムへのアクセスを提供する。
- 参考スコア(独自算出の注目度): 0.1633301148398433
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automatic aorta segmentation from 3-D medical volumes is an important yet
difficult task. Several factors make the problem challenging, e.g. the
possibility of aortic dissection or the difficulty with segmenting and
annotating the small branches. This work presents a contribution by the MedGIFT
team to the SEG.A challenge organized during the MICCAI 2023 conference. We
propose a fully automated algorithm based on deep encoder-decoder architecture.
The main assumption behind our work is that data preprocessing and augmentation
are much more important than the deep architecture, especially in low data
regimes. Therefore, the solution is based on a variant of traditional
convolutional U-Net. The proposed solution achieved a Dice score above 0.9 for
all testing cases with the highest stability among all participants. The method
scored 1st, 4th, and 3rd in terms of the clinical evaluation, quantitative
results, and volumetric meshing quality, respectively. We freely release the
source code, pretrained model, and provide access to the algorithm on the
Grand-Challenge platform.
- Abstract(参考訳): 3次元医用量の自動大動脈分割は重要な課題である。
いくつかの要因は、大動脈解離の可能性や、小枝の分節化や注釈の難しさなど、問題を難しくしている。
この研究は、MICCAI 2023カンファレンスで組織されたSEGへのMedGIFTチームの貢献を示す。
ディープエンコーダ・デコーダアーキテクチャに基づく完全自動アルゴリズムを提案する。
私たちの研究の主な前提は、特に低いデータ構造において、データ前処理と拡張がディープアーキテクチャよりもずっと重要であるということです。
したがって、この解は伝統的な畳み込みU-Netの変種に基づいている。
提案手法は,すべてのテストケースに対して0.9以上のdiceスコアを達成し,参加者の安定性が最も高かった。
本法は, 臨床評価, 定量的結果, 容積メッシュの質について, 1位, 4位, 3位と評価した。
ソースコードと事前訓練されたモデルを自由にリリースし、Grand-Challengeプラットフォーム上でアルゴリズムへのアクセスを提供する。
関連論文リスト
- Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
本研究では,Fourier領域学習を3次元階層分割モデルにおけるマルチスケール畳み込みカーネルの代用として活用する。
管状血管分割作業において,新しいネットワークは顕著なサイス性能(ASACA500が84.37%,ImageCASが80.32%)を示した。
論文 参考訳(メタデータ) (2024-01-11T19:07:58Z) - The Medical Segmentation Decathlon [37.44481677534694]
最先端の画像セグメンテーションアルゴリズムは、未確認のタスクで再訓練された場合、成熟し、正確で、一般化される。
一連のタスクにおける一貫した良いパフォーマンスは、以前は目に見えないタスクの異なるセットで、彼らの平均的なパフォーマンスを保った。
正確なAIセグメンテーションモデルのトレーニングは現在、非AI専門家にコモディティ化されている。
論文 参考訳(メタデータ) (2021-06-10T13:34:06Z) - Exploring Large Context for Cerebral Aneurysm Segmentation [11.684455292186046]
本論文では、MICCAI 2020 CADAチャレンジにおける動脈瘤分割法の主な技術詳細について概説する。
主な貢献は、大きなパッチサイズで3D U-Netを設定し、大きなコンテキストを取得できることです。
提案手法はMICCAI 2020 CADAテストデータセットで2位,平均ジャカードは0.7593である。
論文 参考訳(メタデータ) (2020-12-30T12:51:43Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-fine
Framework and Its Adversarial Examples [74.92488215859991]
本稿では,これらの課題に効果的に取り組むために,新しい3Dベースの粗粒度フレームワークを提案する。
提案した3Dベースのフレームワークは、3つの軸すべてに沿ってリッチな空間情報を活用できるため、2Dよりも大きなマージンで優れている。
我々は,3つのデータセット,NIH膵データセット,JHMI膵データセット,JHMI病理嚢胞データセットについて実験を行った。
論文 参考訳(メタデータ) (2020-10-29T15:39:19Z) - AutoML Segmentation for 3D Medical Image Data: Contribution to the MSD
Challenge 2018 [2.9864637081333085]
エンコーダ・デコーダアーキテクチャを用いた3次元畳み込みニューラルネットワークを開発し,本論文で述べる。
異方性ボキセルゲメトリーで作用し、異方性深さを持つ。
論文 参考訳(メタデータ) (2020-05-20T11:47:02Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
胎児の頭部全体を米国全巻に分割する,最初の完全自動化ソリューションを提案する。
セグメント化タスクは、まずエンコーダ-デコーダディープアーキテクチャの下で、エンドツーエンドのボリュームマッピングとして定式化される。
次に,セグメンタとハイブリットアテンションスキーム(HAS)を組み合わせることで,識別的特徴を選択し,非情報量的特徴を抑える。
論文 参考訳(メタデータ) (2020-04-28T14:43:05Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。