Data-Driven Breakthroughs and Future Directions in AI Infrastructure: A Comprehensive Review
- URL: http://arxiv.org/abs/2505.16771v1
- Date: Thu, 22 May 2025 15:12:48 GMT
- Title: Data-Driven Breakthroughs and Future Directions in AI Infrastructure: A Comprehensive Review
- Authors: Beyazit Bestami Yuksel, Ayse Yilmazer Metin,
- Abstract summary: This paper presents a comprehensive synthesis of major breakthroughs in artificial intelligence (AI) over the past fifteen years.<n>It identifies key inflection points in AI' s evolution by tracing the convergence of computational resources, data access, and algorithmic innovation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive synthesis of major breakthroughs in artificial intelligence (AI) over the past fifteen years, integrating historical, theoretical, and technological perspectives. It identifies key inflection points in AI' s evolution by tracing the convergence of computational resources, data access, and algorithmic innovation. The analysis highlights how researchers enabled GPU based model training, triggered a data centric shift with ImageNet, simplified architectures through the Transformer, and expanded modeling capabilities with the GPT series. Rather than treating these advances as isolated milestones, the paper frames them as indicators of deeper paradigm shifts. By applying concepts from statistical learning theory such as sample complexity and data efficiency, the paper explains how researchers translated breakthroughs into scalable solutions and why the field must now embrace data centric approaches. In response to rising privacy concerns and tightening regulations, the paper evaluates emerging solutions like federated learning, privacy enhancing technologies (PETs), and the data site paradigm, which reframe data access and security. In cases where real world data remains inaccessible, the paper also assesses the utility and constraints of mock and synthetic data generation. By aligning technical insights with evolving data infrastructure, this study offers strategic guidance for future AI research and policy development.
Related papers
- Rethinking Data Protection in the (Generative) Artificial Intelligence Era [115.71019708491386]
We propose a four-level taxonomy that captures the diverse protection needs arising in modern (generative) AI models and systems.<n>Our framework offers a structured understanding of the trade-offs between data utility and control, spanning the entire AI pipeline.
arXiv Detail & Related papers (2025-07-03T02:45:51Z) - DeepInnovation AI: A Global Dataset Mapping the AI innovation from Academic Research to Industrial Patents [2.8191246153416243]
DeepInnovationAI is a comprehensive global dataset containing three structured files.<n>DeepInnovationAI enables researchers, policymakers, and industry leaders to anticipate trends and identify collaboration opportunities.
arXiv Detail & Related papers (2025-03-12T10:56:02Z) - Empowering Edge Intelligence: A Comprehensive Survey on On-Device AI Models [16.16798813072285]
The rapid advancement of artificial intelligence (AI) technologies has led to an increasing deployment of AI models on edge and terminal devices.<n>This survey comprehensively explores the current state, technical challenges, and future trends of on-device AI models.
arXiv Detail & Related papers (2025-03-08T02:59:51Z) - CS-PaperSum: A Large-Scale Dataset of AI-Generated Summaries for Scientific Papers [3.929864777332447]
CS-PaperSum is a large-scale dataset of 91,919 papers from 31 top-tier computer science conferences.<n>Our dataset enables automated literature analysis, research trend forecasting, and AI-driven scientific discovery.
arXiv Detail & Related papers (2025-02-27T22:48:35Z) - Deep Learning, Machine Learning, Advancing Big Data Analytics and Management [26.911181864764117]
Advances in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management.<n>This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies.<n>It equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics.
arXiv Detail & Related papers (2024-12-03T05:59:34Z) - Survey and Taxonomy: The Role of Data-Centric AI in Transformer-Based Time Series Forecasting [36.31269406067809]
We argue that data-centric AI is essential for training AI models, particularly for transformer-based TSF models efficiently.
We review the previous research works from a data-centric AI perspective and we intend to lay the foundation work for the future development of transformer-based architecture and data-centric AI.
arXiv Detail & Related papers (2024-07-29T08:27:21Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
There have been severe concerns over the trustworthiness of AI technologies.
Machine and deep learning algorithms depend heavily on the data used during their development.
We propose a framework to evaluate the datasets through a responsible rubric.
arXiv Detail & Related papers (2023-10-24T14:01:53Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
We identify the main areas of application of data augmentation algorithms, the types of algorithms used, significant research trends, their progression over time and research gaps in data augmentation literature.
We expect readers to understand the potential of data augmentation, as well as identify future research directions and open questions within data augmentation research.
arXiv Detail & Related papers (2022-07-18T11:38:32Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
We show that attention-based architectures (e.g., Transformers) are fairly robust to distribution shifts.
Our experiments show that replacing convolutional networks with Transformers can greatly reduce catastrophic forgetting of previous devices.
arXiv Detail & Related papers (2021-06-10T21:04:18Z) - Convergence of Artificial Intelligence and High Performance Computing on
NSF-supported Cyberinfrastructure [3.4291439418246177]
Artificial Intelligence (AI) applications have powered transformational solutions for big data challenges in industry and technology.
As AI continues to evolve into a computing paradigm endowed with statistical and mathematical rigor, it has become apparent that single- GPU solutions for training, validation, and testing are no longer sufficient.
This realization has been driving the confluence of AI and high performance computing to reduce time-to-insight.
arXiv Detail & Related papers (2020-03-18T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.