論文の概要: YOLO-Angio: An Algorithm for Coronary Anatomy Segmentation
- arxiv url: http://arxiv.org/abs/2310.15898v1
- Date: Tue, 24 Oct 2023 15:02:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 18:20:45.511849
- Title: YOLO-Angio: An Algorithm for Coronary Anatomy Segmentation
- Title(参考訳): yolo-angio:冠動脈解剖学セグメンテーションのアルゴリズム
- Authors: Tom Liu, Hui Lin, Aggelos K. Katsaggelos, Adrienne Kline
- Abstract要約: われわれは,MICCAI 2023におけるX線アンギオグラフィー画像(ARCADE)を用いた自動冠状動脈疾患診断への取り組みについて報告する。
我々の3段階のアプローチは、従来のコンピュータビジョンによる前処理と特徴選択を組み合わせて、船体コントラストを強化する。
最終セグメンテーションは、グラフベースのソート法で冠状樹を再構築する論理に基づくアプローチに基づいている。
- 参考スコア(独自算出の注目度): 13.603729336413833
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Coronary angiography remains the gold standard for diagnosis of coronary
artery disease, the most common cause of death worldwide. While this procedure
is performed more than 2 million times annually, there remain few methods for
fast and accurate automated measurement of disease and localization of coronary
anatomy. Here, we present our solution to the Automatic Region-based Coronary
Artery Disease diagnostics using X-ray angiography images (ARCADE) challenge
held at MICCAI 2023. For the artery segmentation task, our three-stage approach
combines preprocessing and feature selection by classical computer vision to
enhance vessel contrast, followed by an ensemble model based on YOLOv8 to
propose possible vessel candidates by generating a vessel map. A final
segmentation is based on a logic-based approach to reconstruct the coronary
tree in a graph-based sorting method. Our entry to the ARCADE challenge placed
3rd overall. Using the official metric for evaluation, we achieved an F1 score
of 0.422 and 0.4289 on the validation and hold-out sets respectively.
- Abstract(参考訳): 冠動脈造影は、世界中で最も多い死因である冠動脈疾患の診断基準である。
この手順は年間200万回以上実施されているが、疾患の迅速かつ正確な自動測定と冠動脈解剖の局所化の方法はほとんど残っていない。
そこで本研究では,MICCAI 2023におけるX線アンギオグラフィー画像(ARCADE)を用いた冠状動脈疾患自動診断のソリューションを提案する。
血管分割作業では,従来のコンピュータビジョンによる前処理と特徴選択を組み合わせることで血管コントラストを向上し,さらにyolov8に基づくアンサンブルモデルを用いて血管マップを作成し,血管候補候補を提案する。
最終セグメンテーションは、グラフベースのソート法で冠状樹を再構築する論理に基づくアプローチに基づいている。
アーケードチャレンジへのエントリーは総合で3位だった。
評価のために公式な測定値を用いて,検証セットとホールドアウトセットでそれぞれ0.422点,0.4289点を得た。
関連論文リスト
- SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
冠状動脈構造の複雑さとX線像の固有ノイズが相まって,この課題には大きな課題が生じる。
心血管狭窄セグメンテーションに対する半監督的アプローチを提案する。
自動冠状動脈疾患診断では異常な成績を示した。
論文 参考訳(メタデータ) (2023-11-17T02:01:19Z) - Multivessel Coronary Artery Segmentation and Stenosis Localisation using
Ensemble Learning [3.656984996633334]
そこで本研究では,MICCAI 2023 Automatic Region-based Coronary Artery Disease(冠状動脈疾患自動診断)のためのエンド・ツー・エンドの機械学習ソリューションを提案する。
X線冠動脈造影による冠動脈分画および狭窄性病変の局在性評価の方法の標準化を目的としている。
冠状動脈セグメンテーションでは平均F1スコアが37.69%、狭窄局所化では39.41%であった。
論文 参考訳(メタデータ) (2023-10-27T08:03:12Z) - StenUNet: Automatic Stenosis Detection from X-ray Coronary Angiography [5.430434855741553]
冠動脈疾患(CAD)の重症度は、その位置、狭窄度(狭窄度)、血管数によって定量化される。
MICCAIの大挑戦:X線アンギオグラフィー(ARCADE)を用いた自動領域ベース冠動脈疾患診断は、狭窄アノテーションを用いたデータセットをキュレートした。
我々は,X線冠動脈造影から狭窄を正確に検出するアーキテクチャとアルゴリズムStenUNetを提案する。
論文 参考訳(メタデータ) (2023-10-23T14:04:18Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
我々は,10,021個の胸部CTと157個のラベルの大規模データセットを作成した。
解剖学的擬似ラベル抽出のために3次元解剖分類モデルのアンサンブルを適用した。
得られたセグメンテーションモデルはCXRで顕著な性能を示した。
論文 参考訳(メタデータ) (2023-06-06T18:01:08Z) - Computed tomography coronary angiogram images, annotations and
associated data of normal and diseased arteries [8.516530964229814]
CTCAは冠動脈の解剖と疾患を評価する非侵襲的手法である。
私たちの知る限り、完全な冠状樹の中心線とセグメンテーションを含むパブリックデータセットはありません。
データは、患者固有の3Dプリンティングモデル、セグメンテーションアルゴリズムの開発と検証、医療従事者の教育と訓練、医療機器のテストなど、様々な研究目的に使用できる。
論文 参考訳(メタデータ) (2022-11-03T14:50:43Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
本研究は,MyoPS(MyoPS)の医療画像解析における新たな課題を定義するものである。
myoPSは、MICCAI 2020とともにMyoPSチャレンジで最初に提案された3シーケンスの心臓磁気共鳴(CMR)画像を組み合わせている。
この課題は45対のCMR画像と予め整列されたCMR画像を提供し、アルゴリズムは3つのCMRシーケンスから補完的な情報を結合して病理領域を分割することを可能にする。
論文 参考訳(メタデータ) (2022-01-10T06:37:23Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - AI-based Aortic Vessel Tree Segmentation for Cardiovascular Diseases
Treatment: Status Quo [55.04215695343928]
大動脈血管木は大動脈とその枝枝動脈からなる。
大動脈弁木の自動・半自動セグメンテーションのための計算手法を体系的に検討した。
論文 参考訳(メタデータ) (2021-08-06T08:18:28Z) - Automated Deep Learning Analysis of Angiography Video Sequences for
Coronary Artery Disease [4.233200689119682]
冠状動脈閉塞(狭窄)の評価は、現在、医師による冠動脈造影ビデオシーケンスの視覚的評価によって行われている。
深層学習に基づく自動解析パイプラインを報告し,冠動脈血管造影を迅速かつ客観的に評価する。
我々は、ResNetやU-Netといった強力なディープラーニングアプローチと、従来の画像処理と幾何解析を組み合わせた。
論文 参考訳(メタデータ) (2021-01-29T10:23:49Z) - AGE Challenge: Angle Closure Glaucoma Evaluation in Anterior Segment
Optical Coherence Tomography [61.405005501608706]
アングル閉鎖緑内障(ACG)は開角緑内障よりも攻撃的な疾患である。
前部セグメント光コヒーレンス・トモグラフィー(AS-OCT)は、開角度から角度閉鎖を識別する高速で接触のない方法を提供する。
既存のメソッドを均一に評価するためのパブリックなAS-OCTデータセットは存在しない。
私たちは,MICCAI 2019と共同で開催したAngle closure Glaucoma Evaluation Challenge (AGE)を組織した。
論文 参考訳(メタデータ) (2020-05-05T14:55:01Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。