論文の概要: Integrating View Conditions for Image Synthesis
- arxiv url: http://arxiv.org/abs/2310.16002v3
- Date: Wed, 8 May 2024 08:25:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 19:10:37.542763
- Title: Integrating View Conditions for Image Synthesis
- Title(参考訳): 画像合成のためのビュー条件の統合
- Authors: Jinbin Bai, Zhen Dong, Aosong Feng, Xiao Zhang, Tian Ye, Kaicheng Zhou,
- Abstract要約: 本稿では、視点情報を統合して画像編集タスクの制御を強化する先駆的なフレームワークを提案する。
我々は、画像編集法で満たすべき3つの必須基準、一貫性、可制御性、調和を蒸留する。
- 参考スコア(独自算出の注目度): 14.738884513493227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of image processing, applying intricate semantic modifications within existing images remains an enduring challenge. This paper introduces a pioneering framework that integrates viewpoint information to enhance the control of image editing tasks, especially for interior design scenes. By surveying existing object editing methodologies, we distill three essential criteria -- consistency, controllability, and harmony -- that should be met for an image editing method. In contrast to previous approaches, our framework takes the lead in satisfying all three requirements for addressing the challenge of image synthesis. Through comprehensive experiments, encompassing both quantitative assessments and qualitative comparisons with contemporary state-of-the-art methods, we present compelling evidence of our framework's superior performance across multiple dimensions. This work establishes a promising avenue for advancing image synthesis techniques and empowering precise object modifications while preserving the visual coherence of the entire composition.
- Abstract(参考訳): 画像処理の分野では、既存の画像に複雑な意味的修正を適用することは、永続的な課題である。
本稿では、特にインテリアデザインシーンにおける画像編集作業の制御を強化するために、視点情報を統合する先駆的なフレームワークを提案する。
既存のオブジェクト編集手法を調査することにより、画像編集手法で満たすべき3つの必須基準(一貫性、可制御性、調和性)を抽出する。
従来のアプローチとは対照的に,このフレームワークは画像合成の課題に対処するための3つの要件をすべて満たしている。
総合的な実験を通じて、定量的評価と現代の最先端手法との質的比較の両方を包含し、多次元にわたるフレームワークの優れた性能を示す説得力のある証拠を提示する。
この研究は、画像合成技術の進歩と、合成全体の視覚的コヒーレンスを保ちながら、精密なオブジェクト修正を促進するための有望な道を確立する。
関連論文リスト
- Consolidating Attention Features for Multi-view Image Editing [126.19731971010475]
本研究では,空間制御に基づく幾何学的操作に着目し,様々な視点にまたがって編集プロセスを統合する手法を提案する。
編集画像の内部クエリ機能に基づいて訓練されたニューラルラジアンス場QNeRFを紹介する。
拡散時間の経過とともにクエリをよりよく統合する、プログレッシブで反復的な手法により、プロセスを洗練します。
論文 参考訳(メタデータ) (2024-02-22T18:50:18Z) - Unified Diffusion-Based Rigid and Non-Rigid Editing with Text and Image
Guidance [15.130419159003816]
本稿では,厳密な編集と非厳密な編集の両方を実行できる多用途画像編集フレームワークを提案する。
我々は、多種多様な編集シナリオを扱うために、デュアルパスインジェクション方式を利用する。
外観と構造情報の融合のための統合自己認識機構を導入する。
論文 参考訳(メタデータ) (2024-01-04T08:21:30Z) - Unifying Correspondence, Pose and NeRF for Pose-Free Novel View Synthesis from Stereo Pairs [57.492124844326206]
この研究は、3次元視覚における挑戦的で先駆的な課題であるステレオペアからのポーズレスノベルビュー合成の課題に踏み込んだ。
我々の革新的なフレームワークは、これまでとは違って、シームレスに2D対応マッチング、カメラポーズ推定、NeRFレンダリングを統合し、これらのタスクの相乗的強化を促進します。
論文 参考訳(メタデータ) (2023-12-12T13:22:44Z) - Layered Rendering Diffusion Model for Zero-Shot Guided Image Synthesis [60.260724486834164]
本稿では,テキストクエリに依存する拡散モデルにおける空間制御性向上のための革新的な手法を提案する。
視覚誘導(Vision Guidance)とレイヤーレンダリング拡散(Layered Rendering Diffusion)フレームワーク(Layered Diffusion)という2つの重要なイノベーションを提示します。
本稿では,ボックス・ツー・イメージ,セマンティック・マスク・ツー・イメージ,画像編集の3つの実践的応用に適用する。
論文 参考訳(メタデータ) (2023-11-30T10:36:19Z) - Zero-Shot Image Harmonization with Generative Model Prior [22.984119094424056]
画像調和のためのゼロショットアプローチを提案し, 大量の合成合成画像への依存を克服することを目的とした。
人間の振る舞いにインスパイアされた、完全にモジュール化されたフレームワークを導入します。
さまざまなシーンやオブジェクトにまたがる説得力のある視覚的結果と、アプローチを検証するユーザスタディを提示します。
論文 参考訳(メタデータ) (2023-07-17T00:56:21Z) - Cones 2: Customizable Image Synthesis with Multiple Subjects [50.54010141032032]
本研究では,特定の対象を効率的に表現する方法と,異なる対象を適切に構成する方法について検討する。
クロスアテンションマップ内のアクティベーションを修正することにより、レイアウトはイメージ内の異なる被写体の位置を指定して分離する。
論文 参考訳(メタデータ) (2023-05-30T18:00:06Z) - Taming Encoder for Zero Fine-tuning Image Customization with
Text-to-Image Diffusion Models [55.04969603431266]
本稿では,ユーザが指定したカスタマイズされたオブジェクトの画像を生成する手法を提案する。
この手法は、従来のアプローチで要求される長大な最適化をバイパスする一般的なフレームワークに基づいている。
提案手法は, 出力品質, 外観の多様性, 被写体忠実度を考慮した画像合成が可能であることを示す。
論文 参考訳(メタデータ) (2023-04-05T17:59:32Z) - Guided Co-Modulated GAN for 360{\deg} Field of View Extrapolation [15.850166450573756]
一つの画像から360度視野を抽出する手法を提案する。
提案手法は, 従来の画像品質指標よりも高い精度で, 最新の結果が得られる。
論文 参考訳(メタデータ) (2022-04-15T01:48:35Z) - Modeling Artistic Workflows for Image Generation and Editing [83.43047077223947]
与えられた芸術的ワークフローに従う生成モデルを提案する。
既存の芸術作品の多段画像編集だけでなく、多段画像生成も可能である。
論文 参考訳(メタデータ) (2020-07-14T17:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。