Anchor Space Optimal Transport: Accelerating Batch Processing of
Multiple OT Problems
- URL: http://arxiv.org/abs/2310.16123v1
- Date: Tue, 24 Oct 2023 18:55:12 GMT
- Title: Anchor Space Optimal Transport: Accelerating Batch Processing of
Multiple OT Problems
- Authors: Jianming Huang, Xun Su, Zhongxi Fang, Hiroyuki Kasai
- Abstract summary: We propose a translated OT problem designated as the anchor space optimal transport (ASOT) problem.
For the proposed ASOT problem, the distributions will be mapped into a shared anchor point space, which learns the potential common characteristics.
Based on the proposed ASOT, the Wasserstein distance error to the original OT problem is proven to be bounded by ground cost errors.
- Score: 13.846014191157405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The optimal transport (OT) theory provides an effective way to compare
probability distributions on a defined metric space, but it suffers from cubic
computational complexity. Although the Sinkhorn's algorithm greatly reduces the
computational complexity of OT solutions, the solutions of multiple OT problems
are still time-consuming and memory-comsuming in practice. However, many works
on the computational acceleration of OT are usually based on the premise of a
single OT problem, ignoring the potential common characteristics of the
distributions in a mini-batch. Therefore, we propose a translated OT problem
designated as the anchor space optimal transport (ASOT) problem, which is
specially designed for batch processing of multiple OT problem solutions. For
the proposed ASOT problem, the distributions will be mapped into a shared
anchor point space, which learns the potential common characteristics and thus
help accelerate OT batch processing. Based on the proposed ASOT, the
Wasserstein distance error to the original OT problem is proven to be bounded
by ground cost errors. Building upon this, we propose three methods to learn an
anchor space minimizing the distance error, each of which has its application
background. Numerical experiments on real-world datasets show that our proposed
methods can greatly reduce computational time while maintaining reasonable
approximation performance.
Related papers
- A Specialized Semismooth Newton Method for Kernel-Based Optimal
Transport [92.96250725599958]
Kernel-based optimal transport (OT) estimators offer an alternative, functional estimation procedure to address OT problems from samples.
We show that our SSN method achieves a global convergence rate of $O (1/sqrtk)$, and a local quadratic convergence rate under standard regularity conditions.
arXiv Detail & Related papers (2023-10-21T18:48:45Z) - Energy-Guided Continuous Entropic Barycenter Estimation for General Costs [95.33926437521046]
We propose a novel algorithm for approximating the continuous Entropic OT (EOT) barycenter for arbitrary OT cost functions.
Our approach is built upon the dual reformulation of the EOT problem based on weak OT.
arXiv Detail & Related papers (2023-10-02T11:24:36Z) - Building the Bridge of Schr\"odinger: A Continuous Entropic Optimal
Transport Benchmark [96.06787302688595]
We propose a novel way to create pairs of probability distributions for which the ground truth OT solution is known by the construction.
We use these benchmark pairs to test how well existing neural EOT/SB solvers actually compute the EOT solution.
arXiv Detail & Related papers (2023-06-16T20:03:36Z) - Light Unbalanced Optimal Transport [69.18220206873772]
Existing solvers are either based on principles or heavy-weighted with complex optimization objectives involving several neural networks.
We show that our solver provides a universal approximation of UEOT solutions and obtains its generalization bounds.
arXiv Detail & Related papers (2023-03-14T15:44:40Z) - Sliced Optimal Partial Transport [13.595857406165292]
We propose an efficient algorithm for calculating the Optimal Partial Transport problem between two non-negative measures in one dimension.
We demonstrate the computational and accuracy benefits of the sliced OPT-based method in various numerical experiments.
arXiv Detail & Related papers (2022-12-15T18:55:23Z) - Unbalanced Optimal Transport, from Theory to Numerics [0.0]
We argue that unbalanced OT, entropic regularization and Gromov-Wasserstein (GW) can work hand-in-hand to turn OT into efficient geometric loss functions for data sciences.
The main motivation for this review is to explain how unbalanced OT, entropic regularization and GW can work hand-in-hand to turn OT into efficient geometric loss functions for data sciences.
arXiv Detail & Related papers (2022-11-16T09:02:52Z) - Entropic Neural Optimal Transport via Diffusion Processes [105.34822201378763]
We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between continuous probability distributions.
Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schr"odinger Bridge problem.
In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step.
arXiv Detail & Related papers (2022-11-02T14:35:13Z) - Sparsity-Constrained Optimal Transport [27.76137474217754]
Regularized optimal transport is now increasingly used as a loss or as a matching layer in neural networks.
We propose a new approach for OT with explicit cardinality constraints on the transportation plan.
Our method can be thought as a middle ground between unregularized OT (recovered in the case $k$) and quadratically-regularized OT (recovered when $k$ is large enough)
arXiv Detail & Related papers (2022-09-30T13:39:47Z) - Low-rank Optimal Transport: Approximation, Statistics and Debiasing [51.50788603386766]
Low-rank optimal transport (LOT) approach advocated in citescetbon 2021lowrank
LOT is seen as a legitimate contender to entropic regularization when compared on properties of interest.
We target each of these areas in this paper in order to cement the impact of low-rank approaches in computational OT.
arXiv Detail & Related papers (2022-05-24T20:51:37Z) - Learning Cost Functions for Optimal Transport [44.64193016158591]
Inverse optimal transport (OT) refers to the problem of learning the cost function for OT from observed transport plan or its samples.
We derive an unconstrained convex optimization formulation of the inverse OT problem, which can be further augmented by any customizable regularization.
arXiv Detail & Related papers (2020-02-22T07:27:17Z) - Regularized Optimal Transport is Ground Cost Adversarial [34.81915836064636]
We show that regularization of the optimal transport problem can be interpreted as ground cost adversarial.
This gives access to a robust dissimilarity measure on the ground space, which can in turn be used in other applications.
arXiv Detail & Related papers (2020-02-10T17:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.