ConDefects: A New Dataset to Address the Data Leakage Concern for
LLM-based Fault Localization and Program Repair
- URL: http://arxiv.org/abs/2310.16253v1
- Date: Wed, 25 Oct 2023 00:06:02 GMT
- Title: ConDefects: A New Dataset to Address the Data Leakage Concern for
LLM-based Fault Localization and Program Repair
- Authors: Yonghao Wu, Zheng Li, Jie M. Zhang, Yong Liu
- Abstract summary: "ConDefects" is a novel dataset of real faults meticulously curated to eliminate such overlap.
"ConDefects" contains 1,254 Java faulty programs and 1,625 Python faulty programs.
We pair each fault with fault locations and the corresponding repaired code versions, making it tailored for fault localization and program repair related research.
- Score: 22.342625625700908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growing interest on Large Language Models (LLMs) for fault
localization and program repair, ensuring the integrity and generalizability of
the LLM-based methods becomes paramount. The code in existing widely-adopted
benchmarks for these tasks was written before the the bloom of LLMs and may be
included in the training data of existing popular LLMs, thereby suffering from
the threat of data leakage, leading to misleadingly optimistic performance
metrics. To address this issue, we introduce "ConDefects", a novel dataset of
real faults meticulously curated to eliminate such overlap. ConDefects contains
1,254 Java faulty programs and 1,625 Python faulty programs. All these programs
are sourced from the online competition platform AtCoder and were produced
between October 2021 and September 2023. We pair each fault with fault
locations and the corresponding repaired code versions, making it tailored for
in fault localization and program repair related research. We also provide
interfaces for selecting subsets based on different time windows and coding
task difficulties. While inspired by LLM-based tasks, ConDefects can be adopted
for benchmarking ALL types of fault localization and program repair methods.
The dataset is publicly available, and a demo video can be found at
https://www.youtube.com/watch?v=22j15Hj5ONk.
Related papers
- ROCODE: Integrating Backtracking Mechanism and Program Analysis in Large Language Models for Code Generation [31.363781211927947]
Large language models (LLMs) have achieved impressive performance in code generation.
LLMs are susceptible to error accumulation during code generation.
We propose ROCODE, which integrates the backtracking mechanism and program analysis into LLMs for code generation.
arXiv Detail & Related papers (2024-11-11T16:39:13Z) - Enhancing Fault Localization Through Ordered Code Analysis with LLM Agents and Self-Reflection [8.22737389683156]
Large Language Models (LLMs) offer promising improvements in fault localization by enhancing code comprehension and reasoning.
We introduce LLM4FL, a novel LLM-agent-based fault localization approach that integrates SBFL rankings with a divide-and-conquer strategy.
Our results demonstrate that LLM4FL outperforms AutoFL by 19.27% in Top-1 accuracy and surpasses state-of-the-art supervised techniques such as DeepFL and Grace.
arXiv Detail & Related papers (2024-09-20T16:47:34Z) - Open-domain Implicit Format Control for Large Language Model Generation [52.83173553689678]
We introduce a novel framework for controlled generation in large language models (LLMs)
This study investigates LLMs' capabilities to follow open-domain, one-shot constraints and replicate the format of the example answers.
We also develop a dataset collection methodology for supervised fine-tuning that enhances the open-domain format control of LLMs without degrading output quality.
arXiv Detail & Related papers (2024-08-08T11:51:45Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Aligning LLMs for FL-free Program Repair [14.935596175148586]
This paper investigates a new approach to adapt large language models (LLMs) to program repair.
Our core insight is that LLM's APR capability can be greatly improved by simply aligning the output to their training objective.
Based on this insight, we designed D4C, a straightforward prompting framework for APR.
arXiv Detail & Related papers (2024-04-13T02:36:40Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBench is the first large-scale freeform question-answering (QA) benchmark for code to our knowledge.
It comprises 234 carefully selected high-quality Stack Overflow questions that span across 15 programming languages.
We conduct a systematic evaluation for over 100 latest code LLMs on InfiBench, leading to a series of novel and insightful findings.
arXiv Detail & Related papers (2024-03-11T02:06:30Z) - A Novel Approach for Automatic Program Repair using Round-Trip
Translation with Large Language Models [50.86686630756207]
Research shows that grammatical mistakes in a sentence can be corrected by translating it to another language and back.
Current generative models for Automatic Program Repair (APR) are pre-trained on source code and fine-tuned for repair.
This paper proposes bypassing the fine-tuning step and using Round-Trip Translation (RTT): translation of code from one programming language to another programming or natural language, and back.
arXiv Detail & Related papers (2024-01-15T22:36:31Z) - The GitHub Recent Bugs Dataset for Evaluating LLM-based Debugging
Applications [20.339673903885483]
Large Language Models (LLMs) have demonstrated strong natural language processing and code synthesis capabilities.
Details about LLM training data are often not made public, which has caused concern as to whether existing bug benchmarks are included.
We present the GitHub Recent Bugs dataset, which includes 76 real-world Java bugs that were gathered after the OpenAI data cut-off point.
arXiv Detail & Related papers (2023-10-20T02:37:44Z) - Large Language Models for Test-Free Fault Localization [11.080712737595174]
We propose a language model based fault localization approach that locates buggy lines of code without any test coverage information.
We fine-tune language models with 350 million, 6 billion, and 16 billion parameters on small, manually curated corpora of buggy programs.
Our empirical evaluation shows that LLMAO improves the Top-1 results over the state-of-the-art machine learning fault localization (MLFL) baselines by 2.3%-54.4%, and Top-5 results by 14.4%-35.6%.
arXiv Detail & Related papers (2023-10-03T01:26:39Z) - Can Large Language Models Infer Causation from Correlation? [104.96351414570239]
We test the pure causal inference skills of large language models (LLMs)
We formulate a novel task Corr2Cause, which takes a set of correlational statements and determines the causal relationship between the variables.
We show that these models achieve almost close to random performance on the task.
arXiv Detail & Related papers (2023-06-09T12:09:15Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.