Enhancing Fault Localization Through Ordered Code Analysis with LLM Agents and Self-Reflection
- URL: http://arxiv.org/abs/2409.13642v1
- Date: Fri, 20 Sep 2024 16:47:34 GMT
- Title: Enhancing Fault Localization Through Ordered Code Analysis with LLM Agents and Self-Reflection
- Authors: Md Nakhla Rafi, Dong Jae Kim, Tse-Hsun Chen, Shaowei Wang,
- Abstract summary: Large Language Models (LLMs) offer promising improvements in fault localization by enhancing code comprehension and reasoning.
We introduce LLM4FL, a novel LLM-agent-based fault localization approach that integrates SBFL rankings with a divide-and-conquer strategy.
Our results demonstrate that LLM4FL outperforms AutoFL by 19.27% in Top-1 accuracy and surpasses state-of-the-art supervised techniques such as DeepFL and Grace.
- Score: 8.22737389683156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Locating and fixing software faults is a time-consuming and resource-intensive task in software development. Traditional fault localization methods, such as Spectrum-Based Fault Localization (SBFL), rely on statistical analysis of test coverage data but often suffer from lower accuracy. Learning-based techniques, while more effective, require extensive training data and can be computationally expensive. Recent advancements in Large Language Models (LLMs) offer promising improvements in fault localization by enhancing code comprehension and reasoning. However, these LLM-based techniques still face challenges, including token limitations, degraded performance with long inputs, and difficulties managing large-scale projects with complex systems involving multiple interacting components. To address these issues, we introduce LLM4FL, a novel LLM-agent-based fault localization approach that integrates SBFL rankings with a divide-and-conquer strategy. By dividing large coverage data into manageable groups and employing multiple LLM agents through prompt chaining, LLM4FL navigates the codebase and localizes faults more effectively. The approach also incorporates self-reflection and chain-of-thought reasoning, enabling agents to iteratively generate fixes and re-rank suspicious methods. We evaluated LLM4FL on the Defects4J (V2.0.0) benchmark, comprising 675 real-world faults from 14 open-source Java projects. Our results demonstrate that LLM4FL outperforms AutoFL by 19.27% in Top-1 accuracy and surpasses state-of-the-art supervised techniques such as DeepFL and Grace, all without task-specific training. Additionally, we highlight the impact of coverage splitting and prompt chaining on fault localization performance and show that different method ordering can improve Top-1 accuracy by up to 22%.
Related papers
- Where's the Bug? Attention Probing for Scalable Fault Localization [18.699014321422023]
We present Bug Attention Probe (BAP), a method which learns state-of-the-art fault localization without any direct localization labels.
BAP is significantly more efficient than prompting, outperforming large open-weight models at a small fraction of the computational cost.
arXiv Detail & Related papers (2025-02-19T18:59:32Z) - Confident or Seek Stronger: Exploring Uncertainty-Based On-device LLM Routing From Benchmarking to Generalization [61.02719787737867]
Large language models (LLMs) are increasingly deployed and democratized on edge devices.
One promising solution is uncertainty-based SLM routing, offloading high-stakes queries to stronger LLMs when resulting in low-confidence responses on SLM.
We conduct a comprehensive investigation into benchmarking and generalization of uncertainty-driven routing strategies from SLMs to LLMs over 1500+ settings.
arXiv Detail & Related papers (2025-02-06T18:59:11Z) - Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation [55.21013307734612]
AoPS-Instruct is a dataset of more than 600,000 high-quality QA pairs.
LiveAoPSBench is an evolving evaluation set with timestamps, derived from the latest forum data.
Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning.
arXiv Detail & Related papers (2025-01-24T06:39:38Z) - LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
Large language models (LLMs) have exhibited impressive capabilities across a myriad of tasks, yet they occasionally yield undesirable outputs.
We introduce LLM2, a novel framework that combines an LLM with a process-based verifier.
LLMs2 is responsible for generating plausible candidates, while the verifier provides timely process-based feedback to distinguish desirable and undesirable outputs.
arXiv Detail & Related papers (2024-12-29T06:32:36Z) - A Real-World Benchmark for Evaluating Fine-Grained Issue Solving Capabilities of Large Language Models [11.087034068992653]
FAUN-Eval is a benchmark specifically designed to evaluate the Fine-grAined issUe solviNg capabilities of LLMs.
It is constructed using a dataset curated from 30 well-known GitHub repositories.
We evaluate ten LLMs with FAUN-Eval, including four closed-source and six open-source models.
arXiv Detail & Related papers (2024-11-27T03:25:44Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - AgentFL: Scaling LLM-based Fault Localization to Project-Level Context [11.147750199280813]
This paper presents AgentFL, a multi-agent system based on ChatGPT for automated fault localization.
By simulating the behavior of a human developer, AgentFL models the FL task as a three-step process, which involves comprehension, navigation, and confirmation.
The evaluation on the widely used Defects4J-V1.2.0 benchmark shows that AgentFL can localize 157 out of 395 bugs within Top-1.
arXiv Detail & Related papers (2024-03-25T01:58:19Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - Large Language Models for Test-Free Fault Localization [11.080712737595174]
We propose a language model based fault localization approach that locates buggy lines of code without any test coverage information.
We fine-tune language models with 350 million, 6 billion, and 16 billion parameters on small, manually curated corpora of buggy programs.
Our empirical evaluation shows that LLMAO improves the Top-1 results over the state-of-the-art machine learning fault localization (MLFL) baselines by 2.3%-54.4%, and Top-5 results by 14.4%-35.6%.
arXiv Detail & Related papers (2023-10-03T01:26:39Z) - Large Language Models in Fault Localisation [32.87044163543427]
This paper investigates the capability of ChatGPT-3.5 and ChatGPT-4, the two state-of-the-art LLMs, on fault localisation.
Within function-level context, ChatGPT-4 outperforms all the existing fault localisation methods.
However, when the code context of the Defects4J dataset expands to the class-level, ChatGPT-4's performance suffers a significant drop.
arXiv Detail & Related papers (2023-08-29T13:07:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.