Generative Pre-training for Speech with Flow Matching
- URL: http://arxiv.org/abs/2310.16338v2
- Date: Mon, 25 Mar 2024 18:18:40 GMT
- Title: Generative Pre-training for Speech with Flow Matching
- Authors: Alexander H. Liu, Matt Le, Apoorv Vyas, Bowen Shi, Andros Tjandra, Wei-Ning Hsu,
- Abstract summary: We pre-trained a generative model, named SpeechFlow, on 60k hours of untranscribed speech with Flow Matching and masked conditions.
Experiment results show the pre-trained generative model can be fine-tuned with task-specific data to match or surpass existing expert models on speech enhancement, separation, and synthesis.
- Score: 81.59952572752248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative models have gained more and more attention in recent years for their remarkable success in tasks that required estimating and sampling data distribution to generate high-fidelity synthetic data. In speech, text-to-speech synthesis and neural vocoder are good examples where generative models have shined. While generative models have been applied to different applications in speech, there exists no general-purpose generative model that models speech directly. In this work, we take a step toward this direction by showing a single pre-trained generative model can be adapted to different downstream tasks with strong performance. Specifically, we pre-trained a generative model, named SpeechFlow, on 60k hours of untranscribed speech with Flow Matching and masked conditions. Experiment results show the pre-trained generative model can be fine-tuned with task-specific data to match or surpass existing expert models on speech enhancement, separation, and synthesis. Our work suggested a foundational model for generation tasks in speech can be built with generative pre-training.
Related papers
- Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational deep learning (DL) models are general models, trained on diverse, diverse, and unlabelled datasets.
We introduce Masked Spectrogram Modeling, a novel self-supervised learning approach for pretraining foundational DL models on radio signals.
arXiv Detail & Related papers (2024-11-14T23:56:57Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
We study the impact of training generative models on mixed datasets.
We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough.
We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-09-30T16:41:04Z) - Feature Normalization for Fine-tuning Self-Supervised Models in Speech
Enhancement [19.632358491434697]
Large, pre-trained representation models trained using self-supervised learning have gained popularity in various fields of machine learning.
In this paper, we investigate the feasibility of using pre-trained speech representation models for a downstream speech enhancement task.
Our proposed method enables significant improvements in speech quality compared to baselines when combined with various types of pre-trained speech models.
arXiv Detail & Related papers (2023-06-14T10:03:33Z) - DIRECTOR: Generator-Classifiers For Supervised Language Modeling [27.86870968048833]
Current language models achieve low perplexity but their resulting generations still suffer from toxic responses, repetitiveness and contradictions.
We introduce a new architecture, sc Director, that consists of a unified generator-classifier with both a language modeling and a classification head for each output token.
arXiv Detail & Related papers (2022-06-15T17:44:08Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
We focus on aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
We propose to reformulate the extraction and prediction tasks into the sequence generation task, using a generative language model with unidirectional attention.
Our approach outperforms the previous state-of-the-art (based on BERT) on average performance by a large margins in few-shot and full-shot settings.
arXiv Detail & Related papers (2022-04-11T18:31:53Z) - Improving Non-autoregressive Generation with Mixup Training [51.61038444990301]
We present a non-autoregressive generation model based on pre-trained transformer models.
We propose a simple and effective iterative training method called MIx Source and pseudo Target.
Our experiments on three generation benchmarks including question generation, summarization and paraphrase generation, show that the proposed framework achieves the new state-of-the-art results.
arXiv Detail & Related papers (2021-10-21T13:04:21Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - A Spectral Energy Distance for Parallel Speech Synthesis [29.14723501889278]
Speech synthesis is an important practical generative modeling problem.
We propose a new learning method that allows us to train highly parallel models of speech.
arXiv Detail & Related papers (2020-08-03T19:56:04Z) - Exploring Versatile Generative Language Model Via Parameter-Efficient
Transfer Learning [70.81910984985683]
We propose an effective way to fine-tune multiple down-stream generation tasks simultaneously using a single, large pre-trained model.
The experiments on five diverse language generation tasks show that by just using an additional 2-3% parameters for each task, our model can maintain or even improve the performance of fine-tuning the whole model.
arXiv Detail & Related papers (2020-04-08T06:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.