論文の概要: Frequency-Aware Transformer for Learned Image Compression
- arxiv url: http://arxiv.org/abs/2310.16387v4
- Date: Mon, 16 Dec 2024 06:09:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:49:38.382653
- Title: Frequency-Aware Transformer for Learned Image Compression
- Title(参考訳): 学習画像圧縮のための周波数認識変換器
- Authors: Han Li, Shaohui Li, Wenrui Dai, Chenglin Li, Junni Zou, Hongkai Xiong,
- Abstract要約: 学習画像圧縮(lic)のためのマルチスケール指向性アナリシスを初めて実現した周波数認識変換器(FAT)ブロックを提案する。
FATブロックは、自然画像のマルチスケールおよび指向性周波数成分をキャプチャするための周波数分解ウィンドウアテンション(FDWA)モジュールを含む。
また、周波数変調フィードフォワードネットワーク(FMFFN)を導入し、異なる周波数成分を適応的に変調し、周波数歪み性能を向上させる。
- 参考スコア(独自算出の注目度): 64.28698450919647
- License:
- Abstract: Learned image compression (LIC) has gained traction as an effective solution for image storage and transmission in recent years. However, existing LIC methods are redundant in latent representation due to limitations in capturing anisotropic frequency components and preserving directional details. To overcome these challenges, we propose a novel frequency-aware transformer (FAT) block that for the first time achieves multiscale directional ananlysis for LIC. The FAT block comprises frequency-decomposition window attention (FDWA) modules to capture multiscale and directional frequency components of natural images. Additionally, we introduce frequency-modulation feed-forward network (FMFFN) to adaptively modulate different frequency components, improving rate-distortion performance. Furthermore, we present a transformer-based channel-wise autoregressive (T-CA) model that effectively exploits channel dependencies. Experiments show that our method achieves state-of-the-art rate-distortion performance compared to existing LIC methods, and evidently outperforms latest standardized codec VTM-12.1 by 14.5%, 15.1%, 13.0% in BD-rate on the Kodak, Tecnick, and CLIC datasets.
- Abstract(参考訳): 近年,学習画像圧縮(lic)が画像記憶と伝送に有効なソリューションとして注目されている。
しかし、既存のlicメソッドは、異方性周波数成分の捕捉や方向の詳細の保存に制限があるため、遅延表現において冗長である。
これらの課題を克服するために,新しい周波数対応変換器 (FAT) ブロックを提案する。
FATブロックは、自然画像のマルチスケールおよび指向性周波数成分をキャプチャするための周波数分解ウィンドウアテンション(FDWA)モジュールを含む。
さらに、周波数変調フィードフォワードネットワーク(FMFFN)を導入し、異なる周波数成分を適応的に変調し、周波数歪み性能を向上させる。
さらに、チャネル依存性を効果的に活用するトランスフォーマーベースのチャネルワイド自己回帰(T-CA)モデルを提案する。
実験により,本手法は既存の標準手法と比較して最先端の速度歪み性能を実現し,コダック,テックニック,CLICデータセット上でのBDレートの14.5%,15.1%,13.0%,最新の標準コーデックVTM-12.1よりも明らかに優れていた。
関連論文リスト
- Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
画像超解像のための効果的な拡散変換器(DiT-SR)を設計する。
実際には、DiT-SRは全体のU字型アーキテクチャを活用し、すべての変圧器ブロックに対して均一な等方性設計を採用する。
我々は、広く使われているAdaLNの制限を分析し、周波数適応型時間-ステップ条件付けモジュールを提案する。
論文 参考訳(メタデータ) (2024-09-29T07:14:16Z) - Few-Shot Domain Adaptation for Learned Image Compression [24.37696296367332]
学習された画像圧縮(lic)は、最先端の速度歪み性能を達成した。
licモデルは通常、トレーニング外領域のイメージに適用した場合、大幅なパフォーマンス劣化に悩まされる。
プレトレーニングモデルにプラグイン・アンド・プレイアダプタを組み込むことにより, lic の領域適応手法を提案する。
論文 参考訳(メタデータ) (2024-09-17T12:05:29Z) - Frequency-Guided Masking for Enhanced Vision Self-Supervised Learning [49.275450836604726]
本稿では、事前学習の有効性を大幅に向上させる、新しい周波数ベースの自己監視学習(SSL)手法を提案する。
我々は、知識蒸留によって強化された2ブランチのフレームワークを使用し、モデルがフィルタされた画像と原画像の両方を入力として取り込むことを可能にする。
論文 参考訳(メタデータ) (2024-09-16T15:10:07Z) - Bi-Level Spatial and Channel-aware Transformer for Learned Image Compression [0.0]
本稿では,特徴マップ内の周波数成分を考慮したトランスフォーマーに基づく画像圧縮手法を提案する。
本手法は,空間ベース分岐が高周波数と低周波数を独立に扱うHSCATB(Hybrid Space-Channel Attention Transformer Block)を統合した。
また、トランスフォーマーブロック内にMLGFFN(Mixed Local-Global Feed Forward Network)を導入し、多様な情報とリッチな情報の抽出を強化する。
論文 参考訳(メタデータ) (2024-08-07T15:35:25Z) - AdaIR: Adaptive All-in-One Image Restoration via Frequency Mining and Modulation [99.57024606542416]
周波数マイニングと変調に基づく適応的なオールインワン画像復元ネットワークを提案する。
我々のアプローチは、異なる周波数サブバンド上の画像内容に異なる劣化タイプが影響を及ぼすという観察によって動機付けられている。
提案モデルでは,入力劣化に応じて情報周波数サブバンドをアクセントすることで適応的再構成を実現する。
論文 参考訳(メタデータ) (2024-03-21T17:58:14Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
本稿では,画像強調や超解像といった深層学習に基づく画像変換手法における共通の課題に対処することを目的とする。
本稿では、周波数領域内における分布距離を計算するための、新しいシンプルな周波数分布損失(FDL)を提案する。
本手法は,周波数領域におけるグローバル情報の思慮深い活用により,トレーニング制約として実証的に有効であることが実証された。
論文 参考訳(メタデータ) (2024-02-28T09:27:41Z) - End-to-End Optimized Image Compression with the Frequency-Oriented
Transform [8.27145506280741]
本稿では,周波数指向変換により最適化された画像圧縮モデルを提案する。
このモデルは任意の周波数成分を選択的に伝送することでスケーラブルな符号化を可能にする。
次世代標準H.266/VVCを含む従来のコーデックをMS-SSIMで比較した。
論文 参考訳(メタデータ) (2024-01-16T08:16:10Z) - Progressive Learning with Visual Prompt Tuning for Variable-Rate Image
Compression [60.689646881479064]
本稿では,変圧器を用いた可変レート画像圧縮のためのプログレッシブラーニングパラダイムを提案する。
視覚的プロンプトチューニングにインスパイアされた私たちは,エンコーダ側とデコーダ側でそれぞれ入力画像と隠蔽特徴のプロンプトを抽出するためにLPMを使用する。
提案モデルでは, 速度歪み特性の観点から現行の可変画像法よりも優れ, スクラッチから訓練した最先端の固定画像圧縮法にアプローチする。
論文 参考訳(メタデータ) (2023-11-23T08:29:32Z) - LLIC: Large Receptive Field Transform Coding with Adaptive Weights for Learned Image Compression [27.02281402358164]
学習画像圧縮のための適応重み付き大規模受容場変換符号化を提案する。
カーネルをベースとした奥行きに関する大規模な畳み込みを導入し,複雑さを抑えながら冗長性を向上する。
我々のLLICモデルは最先端のパフォーマンスを実現し、パフォーマンスと複雑さのトレードオフを改善する。
論文 参考訳(メタデータ) (2023-04-19T11:19:10Z) - High-Fidelity Variable-Rate Image Compression via Invertible Activation
Transformation [24.379052026260034]
Invertible Activation Transformation (IAT) モジュールを提案する。
IATとQLevelは、画像圧縮モデルに、画像の忠実さを良く保ちながら、細かな可変レート制御能力を与える。
提案手法は,特に複数再符号化後に,最先端の可変レート画像圧縮法よりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2022-09-12T07:14:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。