Radio Frequency Fingerprinting via Deep Learning: Challenges and Opportunities
- URL: http://arxiv.org/abs/2310.16406v2
- Date: Mon, 15 Apr 2024 16:47:50 GMT
- Title: Radio Frequency Fingerprinting via Deep Learning: Challenges and Opportunities
- Authors: Saeif Al-Hazbi, Ahmed Hussain, Savio Sciancalepore, Gabriele Oligeri, Panos Papadimitratos,
- Abstract summary: Radio Frequency Fingerprinting (RFF) techniques promise to authenticate wireless devices at the physical layer based on inherent hardware imperfections introduced during manufacturing.
Recent advances in Machine Learning, particularly in Deep Learning (DL), have improved the ability of RFF systems to extract and learn complex features that make up the device-specific fingerprint.
This paper systematically identifies and analyzes the essential considerations and challenges encountered in the creation of DL-based RFF systems.
- Score: 4.800138615859937
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Radio Frequency Fingerprinting (RFF) techniques promise to authenticate wireless devices at the physical layer based on inherent hardware imperfections introduced during manufacturing. Such RF transmitter imperfections are reflected into over-the-air signals, allowing receivers to accurately identify the RF transmitting source. Recent advances in Machine Learning, particularly in Deep Learning (DL), have improved the ability of RFF systems to extract and learn complex features that make up the device-specific fingerprint. However, integrating DL techniques with RFF and operating the system in real-world scenarios presents numerous challenges, originating from the embedded systems and the DL research domains. This paper systematically identifies and analyzes the essential considerations and challenges encountered in the creation of DL-based RFF systems across their typical development life-cycle, which include (i) data collection and preprocessing, (ii) training, and finally, (iii) deployment. Our investigation provides a comprehensive overview of the current open problems that prevent real deployment of DL-based RFF systems while also discussing promising research opportunities to enhance the overall accuracy, robustness, and privacy of these systems.
Related papers
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - A Comprehensive Survey on Radio Frequency (RF) Fingerprinting:
Traditional Approaches, Deep Learning, and Open Challenges [1.5469452301122175]
5G networks and beyond envisions massive Internet of Things (IoT) rollout to support disruptive applications.
Massive scale of wireless devices exposes unprecedented threat surfaces.
RF fingerprinting is heralded as a candidate technology that can be combined with cryptographic and zero-trust security measures.
arXiv Detail & Related papers (2022-01-03T14:42:53Z) - A Generalizable Model-and-Data Driven Approach for Open-Set RFF
Authentication [74.63333951647581]
Radio-frequency fingerprints(RFFs) are promising solutions for realizing low-cost physical layer authentication.
Machine learning-based methods have been proposed for RFF extraction and discrimination.
We propose a new end-to-end deep learning framework for extracting RFFs from raw received signals.
arXiv Detail & Related papers (2021-08-10T03:59:37Z) - Federated Dynamic Spectrum Access [29.302039892247787]
We introduce a Federated Learning (FL) based framework for the task of Dynamic Spectrum Access (DSA)
FL is a distributive machine learning framework that can reserve the privacy of network terminals under heterogeneous data distributions.
arXiv Detail & Related papers (2021-06-28T20:49:41Z) - Federated Learning for Intrusion Detection System: Concepts, Challenges
and Future Directions [0.20236506875465865]
Intrusion detection systems play a significant role in ensuring security and privacy of smart devices.
The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system.
arXiv Detail & Related papers (2021-06-16T13:13:04Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Random Fourier Feature Based Deep Learning for Wireless Communications [18.534006003020828]
This paper analytically quantify the viability of RFF based deep-learning.
A new distribution-dependent RFF is proposed to facilitate DL architectures with low training-complexity.
In all the presented simulations, it is observed that the proposed distribution-dependent RFFs significantly outperform RFFs.
arXiv Detail & Related papers (2021-01-13T18:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.