Deep Learning Techniques for Cervical Cancer Diagnosis based on
Pathology and Colposcopy Images
- URL: http://arxiv.org/abs/2310.16662v1
- Date: Wed, 25 Oct 2023 14:23:40 GMT
- Title: Deep Learning Techniques for Cervical Cancer Diagnosis based on
Pathology and Colposcopy Images
- Authors: Hana Ahmadzadeh Sarhangi, Dorsa Beigifard, Elahe Farmani, Hamidreza
Bolhasani
- Abstract summary: Cervical cancer is a prevalent disease affecting millions of women worldwide every year.
Deep learning, a promising technology in computer vision, has emerged as a potential solution to improve the accuracy and efficiency of cervical cancer screening.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cervical cancer is a prevalent disease affecting millions of women worldwide
every year. It requires significant attention, as early detection during the
precancerous stage provides an opportunity for a cure. The screening and
diagnosis of cervical cancer rely on cytology and colposcopy methods. Deep
learning, a promising technology in computer vision, has emerged as a potential
solution to improve the accuracy and efficiency of cervical cancer screening
compared to traditional clinical inspection methods that are prone to human
error. This review article discusses cervical cancer and its screening
processes, followed by the Deep Learning training process and the
classification, segmentation, and detection tasks for cervical cancer
diagnosis. Additionally, we explored the most common public datasets used in
both cytology and colposcopy and highlighted the popular and most utilized
architectures that researchers have applied to both cytology and colposcopy. We
reviewed 24 selected practical papers in this study and summarized them. This
article highlights the remarkable efficiency in enhancing the precision and
speed of cervical cancer analysis by Deep Learning, bringing us closer to early
diagnosis and saving lives.
Related papers
- Cervical Cancer Detection Using Multi-Branch Deep Learning Model [0.6249768559720121]
This research proposes an innovative and novel approach to automate cervical cancer image classification using Multi-Head Self-Attention (MHSA) and convolutional neural networks (CNNs)
Our model achieved a remarkable accuracy of 98.522%, which holds promise for its applicability in other medical image recognition tasks.
arXiv Detail & Related papers (2024-08-20T02:44:48Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
Transfer learning is a technique that leverages acquired features from a domain with richer data to enhance the performance of a domain with limited data.
In this paper, we investigate the improvement of clinically significant prostate cancer prediction in T2-weighted images through transfer learning from breast cancer.
arXiv Detail & Related papers (2024-05-13T15:57:27Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022.
There has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data.
In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy.
arXiv Detail & Related papers (2023-11-30T15:11:03Z) - A comprehensive review of deep learning in lung cancer [0.0]
We discuss the fundamentals of the area of cancer diagnosis, including the processes of cancer diagnosis and the standard classification methods employed by clinicians.
Current methods for cancer diagnosis are deemed ineffective, calling for new and more intelligent approaches.
arXiv Detail & Related papers (2023-07-31T16:28:42Z) - Machine-Learning-based Colorectal Tissue Classification via Acoustic
Resolution Photoacoustic Microscopy [3.916910844026426]
Colonoscopy cannot provide detailed information within the tissues affected by cancer, while biopsy involves tissue removal, which can be painful and invasive.
We studied machine-learning approach for colorectal tissue classification that uses acoustic resolution photoacoustic microscopy (ARPAM)
Our results were analyzed both quantitatively and qualitatively to evaluate the effectiveness of our approach.
arXiv Detail & Related papers (2023-07-17T15:15:26Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
Pathologists diagnose and grade prostate cancer by examining tissue from needle biopsies on glass slides.
Cancer's severity and risk of metastasis are determined by the Gleason grade, a score based on the organization and morphology of prostate cancer glands.
This paper proposes an automated workflow that follows pathologists' textitmodus operandi, isolating and classifying multi-scale patches of individual glands.
arXiv Detail & Related papers (2022-09-27T14:08:19Z) - Recent trends and analysis of Generative Adversarial Networks in
Cervical Cancer Imaging [0.0]
Cervical cancer contributes to 6-29% of all cancers in women.
Early detection of this disease helps in better treatment and survival rate of the patient.
Generative Adversarial Networks (GANs) are catching up with speed in the screening, detection, and classification of cervical cancer.
arXiv Detail & Related papers (2022-09-23T05:45:40Z) - Breast Cancer Detection using Histopathological Images [0.0]
We propose a saliency detection system with the help of advanced deep learning techniques.
We study identification of five diagnostic categories of breast cancer by training a CNN (VGG16, ResNet architecture)
The detection system will be available as an open source web application which can be used by pathologists and medical institutions.
arXiv Detail & Related papers (2022-02-12T17:45:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.