All-optical single-shot readout of a superconducting qubit
- URL: http://arxiv.org/abs/2310.16817v1
- Date: Wed, 25 Oct 2023 17:46:25 GMT
- Title: All-optical single-shot readout of a superconducting qubit
- Authors: Georg Arnold, Thomas Werner, Rishabh Sahu, Lucky N. Kapoor, Liu Qiu,
Johannes M. Fink
- Abstract summary: We demonstrate electro-optic microwave photonics at millikelvin temperatures to implement a radio-over-fiber qubit readout.
We do not observe any direct radiation impact on the qubit state as verified with high-fidelity quantum-non-demolition measurements.
This experiment showcases the potential of electro-optic radiometry in harsh environments.
- Score: 0.6990493129893112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of superconducting quantum hardware is expected to run
into significant I/O restrictions due to the need for large-scale error
correction in a cryogenic environment. Classical data centers rely on
fiber-optic interconnects to remove similar networking bottlenecks and to allow
for reconfigurable, software-defined infrastructures. In the same spirit,
ultra-cold electro-optic links have been proposed and used to generate qubit
control signals, or to replace cryogenic readout electronics. So far, the
latter suffered from either low efficiency, low bandwidth and the need for
additional microwave drives, or breaking of Cooper pairs and qubit states. In
this work we realize electro-optic microwave photonics at millikelvin
temperatures to implement a radio-over-fiber qubit readout that does not
require any active or passive cryogenic microwave equipment. We demonstrate
all-optical single-shot-readout by means of the Jaynes-Cummings nonlinearity in
a circulator-free readout scheme. Importantly, we do not observe any direct
radiation impact on the qubit state as verified with high-fidelity
quantum-non-demolition measurements despite the absence of shielding elements.
This compatibility between superconducting circuits and telecom wavelength
light is not only a prerequisite to establish modular quantum networks, it is
also relevant for multiplexed readout of superconducting photon detectors and
classical superconducting logic. Moreover, this experiment showcases the
potential of electro-optic radiometry in harsh environments - an
electronics-free sensing principle that extends into the THz regime with
applications in radio astronomy, planetary missions and earth observation.
Related papers
- A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing [7.742583250368887]
For superconducting quantum processors, microwave signals are delivered to each qubit from room-temperature electronics to the cryogenic environment through coaxial cables.
This architecture is not viable for millions of qubits required for fault-tolerant quantum computing.
Monolithic integration of the control electronics and the qubits provides a promising solution.
We report such a signal source driven by digital-like signals, generating pulsed microwave emission with well-controlled phase, intensity, and frequency directly at millikelvin temperatures.
arXiv Detail & Related papers (2024-07-16T14:33:18Z) - Entangling microwaves with optical light [0.0]
Entanglement is a quantum mechanical property.
We create and verify entanglement between microwave and optical fields in a millikelvin environment.
This establishes the long-sought non-classical correlations between superconducting circuits and telecom wavelength light.
arXiv Detail & Related papers (2023-01-09T13:10:51Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Optically-Heralded Entanglement of Superconducting Systems in Quantum
Networks [0.0]
We propose optical networking via heralding end-to-end entanglement with one detected photon and teleportation.
This technique unifies and simplifies entanglement generation between superconducting devices and other physical modalities in quantum networks.
arXiv Detail & Related papers (2020-12-24T19:00:01Z) - Circulation by microwave-induced vortex transport for signal isolation [0.0]
Commercial circulators in the microwave domain typically use ferromagnetic materials and wave interference.
We show that the quantum-coherent motion of a single vortex in such an array suffices to induce nonreciprocal behavior.
arXiv Detail & Related papers (2020-10-08T16:57:16Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z) - Cavity quantum electrodynamic readout of a solid-state spin sensor [0.0]
Solid-state spin sensors still lack a universal, high-fidelity readout technique.
We demonstrate high-fidelity, room-temperature readout of an ensemble of nitrogen-vacancy (NV) centers via strong coupling to a dielectric microwave cavity.
Our results pave a clear path to achieve unity readout fidelity of solid-state spin sensors through increased ensemble size, reduced spin-resonance linewidth, or improved cavity quality factor.
arXiv Detail & Related papers (2020-03-02T18:57:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.