CommonCanvas: An Open Diffusion Model Trained with Creative-Commons
Images
- URL: http://arxiv.org/abs/2310.16825v1
- Date: Wed, 25 Oct 2023 17:56:07 GMT
- Title: CommonCanvas: An Open Diffusion Model Trained with Creative-Commons
Images
- Authors: Aaron Gokaslan, A. Feder Cooper, Jasmine Collins, Landan Seguin,
Austin Jacobson, Mihir Patel, Jonathan Frankle, Cory Stephenson, Volodymyr
Kuleshov
- Abstract summary: We assemble a dataset of Creative-Commons-licensed (CC) images to train text-to-image generative models.
We use an intuitive transfer learning technique to produce a set of high-quality synthetic captions paired with curated CC images.
We develop a data- and compute-efficient training recipe that requires as little as 3% of the LAION-2B data needed to train existing SD2 models, but obtains comparable quality.
- Score: 19.62509002853736
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We assemble a dataset of Creative-Commons-licensed (CC) images, which we use
to train a set of open diffusion models that are qualitatively competitive with
Stable Diffusion 2 (SD2). This task presents two challenges: (1)
high-resolution CC images lack the captions necessary to train text-to-image
generative models; (2) CC images are relatively scarce. In turn, to address
these challenges, we use an intuitive transfer learning technique to produce a
set of high-quality synthetic captions paired with curated CC images. We then
develop a data- and compute-efficient training recipe that requires as little
as 3% of the LAION-2B data needed to train existing SD2 models, but obtains
comparable quality. These results indicate that we have a sufficient number of
CC images (~70 million) for training high-quality models. Our training recipe
also implements a variety of optimizations that achieve ~3X training speed-ups,
enabling rapid model iteration. We leverage this recipe to train several
high-quality text-to-image models, which we dub the CommonCanvas family. Our
largest model achieves comparable performance to SD2 on a human evaluation,
despite being trained on our CC dataset that is significantly smaller than
LAION and using synthetic captions for training. We release our models, data,
and code at
https://github.com/mosaicml/diffusion/blob/main/assets/common-canvas.md
Related papers
- Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
A prevalent strategy to bolster image classification performance is through augmenting the training set with synthetic images generated by T2I models.
In this study, we scrutinize the shortcomings of both current generative and conventional data augmentation techniques.
We introduce an innovative inter-class data augmentation method known as Diff-Mix, which enriches the dataset by performing image translations between classes.
arXiv Detail & Related papers (2024-03-28T17:23:45Z) - Direct Consistency Optimization for Compositional Text-to-Image
Personalization [73.94505688626651]
Text-to-image (T2I) diffusion models, when fine-tuned on a few personal images, are able to generate visuals with a high degree of consistency.
We propose to fine-tune the T2I model by maximizing consistency to reference images, while penalizing the deviation from the pretrained model.
arXiv Detail & Related papers (2024-02-19T09:52:41Z) - KOALA: Empirical Lessons Toward Memory-Efficient and Fast Diffusion Models for Text-to-Image Synthesis [52.42320594388199]
We present three key practices in building an efficient text-to-image model.
Based on these findings, we build two types of efficient text-to-image models, called KOALA-Turbo &-Lightning.
Unlike SDXL, our KOALA models can generate 1024px high-resolution images on consumer-grade GPUs with 8GB of VRAMs (3060Ti)
arXiv Detail & Related papers (2023-12-07T02:46:18Z) - PixArt-$\alpha$: Fast Training of Diffusion Transformer for
Photorealistic Text-to-Image Synthesis [108.83343447275206]
This paper introduces PIXART-$alpha$, a Transformer-based T2I diffusion model whose image generation quality is competitive with state-of-the-art image generators.
It supports high-resolution image synthesis up to 1024px resolution with low training cost.
Tests demonstrate that PIXART-$alpha$ excels in image quality, artistry, and semantic control.
arXiv Detail & Related papers (2023-09-30T16:18:00Z) - SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two
Seconds [88.06788636008051]
Text-to-image diffusion models can create stunning images from natural language descriptions that rival the work of professional artists and photographers.
These models are large, with complex network architectures and tens of denoising iterations, making them computationally expensive and slow to run.
We present a generic approach that unlocks running text-to-image diffusion models on mobile devices in less than $2$ seconds.
arXiv Detail & Related papers (2023-06-01T17:59:25Z) - Wuerstchen: An Efficient Architecture for Large-Scale Text-to-Image
Diffusion Models [6.821399706256863]
W"urstchen is a novel architecture for text-to-image synthesis that combines competitive performance with unprecedented cost-effectiveness.
A key contribution of our work is to develop a latent diffusion technique in which we learn a detailed but extremely compact semantic image representation.
arXiv Detail & Related papers (2023-06-01T13:00:53Z) - LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image
Diffusion Models with Large Language Models [62.75006608940132]
This work proposes to enhance prompt understanding capabilities in text-to-image diffusion models.
Our method leverages a pretrained large language model for grounded generation in a novel two-stage process.
Our method significantly outperforms the base diffusion model and several strong baselines in accurately generating images.
arXiv Detail & Related papers (2023-05-23T03:59:06Z) - Fake it till you make it: Learning transferable representations from
synthetic ImageNet clones [30.264601433216246]
We show that ImageNet clones can close a large part of the gap between models produced by synthetic images and models trained with real images.
We show that models trained on synthetic images exhibit strong generalization properties and perform on par with models trained on real data for transfer.
arXiv Detail & Related papers (2022-12-16T11:44:01Z) - Implementing and Experimenting with Diffusion Models for Text-to-Image
Generation [0.0]
Two models, DALL-E 2 and Imagen, have demonstrated that highly photorealistic images could be generated from a simple textual description of an image.
Text-to-image models require exceptionally large amounts of computational resources to train, as well as handling huge datasets collected from the internet.
This thesis contributes by reviewing the different approaches and techniques used by these models, and then by proposing our own implementation of a text-to-image model.
arXiv Detail & Related papers (2022-09-22T12:03:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.