Effective field theory of particle mixing
- URL: http://arxiv.org/abs/2310.17070v2
- Date: Thu, 29 Feb 2024 23:25:20 GMT
- Title: Effective field theory of particle mixing
- Authors: Shuyang Cao, Daniel Boyanovsky
- Abstract summary: We study emphindirect mixing of two fields induced by their couplings to a common decay channel in a medium.
The analysis reveals subtle caveats in the description of mixing in terms of the widely used non-Hermitian effective Hamiltonian.
- Score: 10.985518406776766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an effective field theory to study \emph{indirect} mixing of two
fields induced by their couplings to a common decay channel in a medium. The
extension of the method of Lee, Oehme and Yang, the cornerstone of analysis of
CP violation in flavored mesons, to include mixing of particles with different
masses provides a guide to and benchmark for the effective field theory. The
analysis reveals subtle caveats in the description of mixing in terms of the
widely used non-Hermitian effective Hamiltonian, more acute in the
non-degenerate case. The effective field theory describes the dynamics of field
mixing where the common intermediate states populate a bath in thermal
equilibrium, as an \emph{open quantum system}. We obtain the effective action
up to second order in the couplings, where indirect mixing is a consequence of
off-diagonal self-energy components. We find that if only one of the mixing
fields features an initial expectation value, indirect mixing induces an
expectation value of the other field. The equal time two point correlation
functions exhibit asymptotic approach to a stationary thermal state, and the
emergence of long-lived \emph{bath induced} coherence which display quantum
beats as a consequence of interference of quasinormal modes in the medium. The
amplitudes of the quantum beats are resonantly enhanced in the nearly
degenerate case with potential observational consequences.
Related papers
- Field mixing in a thermal medium: A quantum master equation approach [10.985518406776766]
We study the nonequilibrium dynamics of the indirect mixing of two (pseudo-)scalar fields induced by their couplings to common decay channels in a medium.
arXiv Detail & Related papers (2024-08-16T00:02:08Z) - Decoherence of a charged Brownian particle in a magnetic field : an analysis of the roles of coupling via position and momentum variables [0.0]
We study the dynamics of a harmonically oscillating charged Brownian particle coupled to an Ohmic heat bath via both position and momentum couplings.
The presence of both position and momentum couplings leads to a stronger interaction with the environment, resulting in a faster loss of coherence.
In addition, the magnetic field results in the slowing down of the loss of information from the system, irrespective of the nature of coupling between the system and the bath.
arXiv Detail & Related papers (2024-04-22T05:10:02Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Decoherence and entropy generation at one loop in the inflationary de
Sitter spacetime for Yukawa interaction [2.9849762483081275]
We extend previous analysis on decoherence in a fermion and scalar quantum field theory.
We use a non-equilibrium effective field theory formalism, suitable for open quantum systems such as this.
Our result is qualitatively similar to an earlier one found by using the influence functional technique for a massive Yukawa theory.
arXiv Detail & Related papers (2023-07-25T12:14:19Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Local Neumann semitransparent layers: resummation, pair production and
duality [0.0]
We consider local semitransparent Neumann boundary conditions for a quantum scalar field.
We interpret the effective action as a theory in a first-quantized phase space.
We prove the existence of a strong/weak duality that links this Neumann field theory to the analogue Dirichlet one.
arXiv Detail & Related papers (2022-08-15T18:00:18Z) - Quantum Coherent States of Interacting Bose-Fermi Mixtures in One
Dimension [68.8204255655161]
We study two-component atomic gas mixtures in one dimension involving both bosons and fermions.
We report a rich variety of coherent ground-state phases that vary with the intrinsic and relative strength of the interactions.
arXiv Detail & Related papers (2021-10-26T17:52:37Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Bosonic Quantum Dynamics Following Colliding Potential Wells [0.0]
We investigate the correlated non-equilibrium quantum dynamics of two bosons confined in two colliding and uniformly accelerated Gaussian wells.
Despite the comparatively weak interaction strengths employed in this work, we identify strong inter-particle correlations by analyzing the corresponding Von Neumann entropy.
arXiv Detail & Related papers (2021-02-02T14:59:08Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.