論文の概要: Enhancing sea ice segmentation in Sentinel-1 images with atrous
convolutions
- arxiv url: http://arxiv.org/abs/2310.17122v1
- Date: Thu, 26 Oct 2023 03:43:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-27 22:21:36.320396
- Title: Enhancing sea ice segmentation in Sentinel-1 images with atrous
convolutions
- Title(参考訳): アトーラス畳み込みによるセンチネル-1画像の海氷分節化の促進
- Authors: Rafael Pires de Lima, Behzad Vahedi, Nick Hughes, Andrew P. Barrett,
Walter Meier, Morteza Karimzadeh
- Abstract要約: MLトレーニングと評価のために生成された高解像度ベンチマークデータセットであるExtreme Earthバージョン2を使用します。
我々のパイプラインは、SAR画像セグメンテーションのためのResNetsとAtrous Space Pyramid Poolingを組み合わせたものである。
提案手法は,全SARシーンを1回の実行で効率的に分割することができ,ベースラインのU-Netよりも高速で,空間解像度と寸法を保ち,パッチ分類に依存するアプローチに比べてノイズに対して頑健である。
- 参考スコア(独自算出の注目度): 1.0905169282633254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the growing volume of remote sensing data and the low latency required
for safe marine navigation, machine learning (ML) algorithms are being
developed to accelerate sea ice chart generation, currently a manual
interpretation task. However, the low signal-to-noise ratio of the freely
available Sentinel-1 Synthetic Aperture Radar (SAR) imagery, the ambiguity of
backscatter signals for ice types, and the scarcity of open-source
high-resolution labelled data makes automating sea ice mapping challenging. We
use Extreme Earth version 2, a high-resolution benchmark dataset generated for
ML training and evaluation, to investigate the effectiveness of ML for
automated sea ice mapping. Our customized pipeline combines ResNets and Atrous
Spatial Pyramid Pooling for SAR image segmentation. We investigate the
performance of our model for: i) binary classification of sea ice and open
water in a segmentation framework; and ii) a multiclass segmentation of five
sea ice types. For binary ice-water classification, models trained with our
largest training set have weighted F1 scores all greater than 0.95 for January
and July test scenes. Specifically, the median weighted F1 score was 0.98,
indicating high performance for both months. By comparison, a competitive
baseline U-Net has a weighted average F1 score of ranging from 0.92 to 0.94
(median 0.93) for July, and 0.97 to 0.98 (median 0.97) for January. Multiclass
ice type classification is more challenging, and even though our models achieve
2% improvement in weighted F1 average compared to the baseline U-Net, test
weighted F1 is generally between 0.6 and 0.80. Our approach can efficiently
segment full SAR scenes in one run, is faster than the baseline U-Net, retains
spatial resolution and dimension, and is more robust against noise compared to
approaches that rely on patch classification.
- Abstract(参考訳): リモートセンシングデータの量の増加と安全な海洋航行に必要な低レイテンシのため、機械学習(ML)アルゴリズムは海氷チャートの生成を加速するために開発されている。
しかし、無料で利用できるSentinel-1 Synthetic Aperture Radar(SAR)画像の低信号対雑音比、氷型の後方散乱信号のあいまいさ、オープンソースの高解像度ラベリングデータの不足は、海氷マッピングの自動化を困難にしている。
MLトレーニングと評価のために生成された高解像度ベンチマークデータセットであるExtreme Earthバージョン2を用いて,自動海氷マッピングにおけるMLの有効性を検討した。
我々のカスタマイズパイプラインは、SAR画像セグメンテーションのためのResNetsとAtrous Space Pyramid Poolingを組み合わせたものである。
我々はモデルの性能について調査する。
一 セグメンテーションの枠組みにおける海氷及び開水の二分分類
二 海氷の種類を五種に区分すること。
2値の氷水分類では、1月と7月のテストシーンでF1スコアが0.95以上になった。
具体的には、中間重み付きF1スコアは0.98であり、どちらも高い性能を示した。
対照的に、競争ベースラインのU-Netは7月の0.92から0.94(中間0.93)、1月の0.97から0.98(中間0.97)までの重み付き平均F1スコアを持つ。
マルチクラス氷型分類はより困難であり、我々のモデルはベースラインのU-Netと比較して2%の重み付きF1平均値の改善を達成したが、テスト重み付きF1は通常0.6から0.80である。
提案手法は,全SARシーンを1回の実行で効率的に分割することができ,ベースラインのU-Netよりも高速で,空間解像度と寸法を保ち,パッチ分類に依存するアプローチに比べてノイズに対して頑健である。
関連論文リスト
- DEEGITS: Deep Learning based Framework for Measuring Heterogenous Traffic State in Challenging Traffic Scenarios [0.0]
本稿では,DeEGITS(Deep Heterogeneous Traffic State Measurement)を提案する。これは最先端の畳み込みニューラルネットワーク(CNN)技術を利用して,車両や歩行者を正確にかつ迅速に検出する包括的フレームワークである。
本研究では,データ融合によるトレーニングデータセットを強化し,車両と歩行者の同時検出を可能にする。
このフレームワークは混合交通条件における異種交通状態を測定するために試験される。
論文 参考訳(メタデータ) (2024-11-13T04:49:32Z) - EffiSegNet: Gastrointestinal Polyp Segmentation through a Pre-Trained EfficientNet-based Network with a Simplified Decoder [0.8892527836401773]
EffiSegNetは、トレーニング済みの畳み込みニューラルネットワーク(CNN)をバックボーンとして、トランスファーラーニングを活用する新しいセグメンテーションフレームワークである。
Kvasir-SEGデータセットを用いて消化管ポリープセグメンテーションタスクの評価を行い,その成果を得た。
論文 参考訳(メタデータ) (2024-07-23T08:54:55Z) - Partial Label Learning with Focal Loss for Sea Ice Classification Based on Ice Charts [2.0270474485799017]
本稿では,海氷分類を学習するための新しいGeoAI手法を提案する。
我々は、ポリゴンレベルのラベルを候補部分ラベルとして扱い、対応する氷濃度を各ラベルの信頼性スコアとして割り当て、焦点損失と統合して畳み込みニューラルネットワーク(CNN)を訓練する。
提案手法により,Sentinel-1双偏極SAR画像の海氷分類性能が向上し,分類精度が87%から92%に向上し,F-1スコアが90%から93%に向上した。
論文 参考訳(メタデータ) (2024-06-05T22:49:30Z) - Foundation Models for Structural Health Monitoring [17.37816294594306]
本稿では,トランスフォーマーニューラルネットワークをMasked Auto-Encoderアーキテクチャを用いて,構造的健康モニタリングのための基礎モデルとして初めて利用することを提案する。
自己教師付き事前学習を通じて、複数の大規模データセットから一般化可能な表現を学習する能力を実証する。
本研究は,3つの運用用インダクトのデータを用いた基礎モデルの有効性を示す。
論文 参考訳(メタデータ) (2024-04-03T13:32:44Z) - A Parallel Workflow for Polar Sea-Ice Classification using Auto-labeling of Sentinel-2 Imagery [3.0635300721402228]
本研究は, 極海氷をセンチネル2画像で分類する, 堅牢で効果的でスケーラブルなシステムを開発することを目的とする。
1つの大きな障害は、基礎となる真実として振る舞うためのラベル付きS2トレーニングデータ(イメージ)がないことである。
そこで本研究では,S2画像のセグメンテーションと自動ラベル付けを行う,スケーラブルで高精度な手法を提案する。
論文 参考訳(メタデータ) (2024-03-19T20:10:50Z) - Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning [54.094272065609815]
本稿では1D-Justo-LiuNetという軽量な1D-CNNモデルを提案する。
1D-Justo-LiuNetは、全てのテストモデルの中で最小のモデルサイズ (4,563 パラメータ) を持つ最大精度 (0.93) を達成する。
論文 参考訳(メタデータ) (2023-10-24T21:57:59Z) - Convolutional Neural Networks for the classification of glitches in
gravitational-wave data streams [52.77024349608834]
我々は、高度LIGO検出器のデータから過渡ノイズ信号(グリッチ)と重力波を分類する。
どちらも、Gravity Spyデータセットを使用して、スクラッチからトレーニングされた、教師付き学習アプローチのモデルを使用します。
また、擬似ラベルの自動生成による事前学習モデルの自己教師型アプローチについても検討する。
論文 参考訳(メタデータ) (2023-03-24T11:12:37Z) - EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
Mobile Vision Applications [68.35683849098105]
入力テンソルを複数のチャネルグループに分割するSDTAエンコーダを導入する。
1.3Mパラメータを持つEdgeNeXtモデルでは、ImageNet-1Kで71.2%のTop-1精度を実現している。
パラメータ5.6MのEdgeNeXtモデルでは、ImageNet-1Kで79.4%のTop-1精度を実現しています。
論文 参考訳(メタデータ) (2022-06-21T17:59:56Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - ASFD: Automatic and Scalable Face Detector [129.82350993748258]
ASFD(Automatic and Scalable Face Detector)を提案する。
ASFDはニューラルアーキテクチャ検索技術の組み合わせと新たな損失設計に基づいている。
ASFD-D0は120FPS以上で動作し、MobilenetはVGA解像度の画像を撮影しています。
論文 参考訳(メタデータ) (2020-03-25T06:00:47Z) - Real-Time target detection in maritime scenarios based on YOLOv3 model [65.35132992156942]
ウェブスクレイピングによって収集された56k以上の海洋船舶の画像からなる、新しい船舶データセットが提案されている。
Keras APIをベースとしたYOLOv3シングルステージ検出器がこのデータセット上に構築されている。
論文 参考訳(メタデータ) (2020-02-10T15:25:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。