論文の概要: Taming Gradient Variance in Federated Learning with Networked Control
Variates
- arxiv url: http://arxiv.org/abs/2310.17200v1
- Date: Thu, 26 Oct 2023 07:32:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-27 21:31:23.247619
- Title: Taming Gradient Variance in Federated Learning with Networked Control
Variates
- Title(参考訳): networked control variates を用いたフェデレーション学習におけるタンピング勾配分散
- Authors: Xingyan Chen, Yaling Liu, Huaming Du, Mu Wang, Yu Zhao
- Abstract要約: 機械学習に対する分散型アプローチであるフェデレーション学習は、広範な通信オーバーヘッドなどの大きな課題に直面している。
フェデレートラーニングのための新しいネットワーク制御変数(FedNCV)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.424502283356168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning, a decentralized approach to machine learning, faces
significant challenges such as extensive communication overheads, slow
convergence, and unstable improvements. These challenges primarily stem from
the gradient variance due to heterogeneous client data distributions. To
address this, we introduce a novel Networked Control Variates (FedNCV)
framework for Federated Learning. We adopt the REINFORCE Leave-One-Out (RLOO)
as a fundamental control variate unit in the FedNCV framework, implemented at
both client and server levels. At the client level, the RLOO control variate is
employed to optimize local gradient updates, mitigating the variance introduced
by data samples. Once relayed to the server, the RLOO-based estimator further
provides an unbiased and low-variance aggregated gradient, leading to robust
global updates. This dual-side application is formalized as a linear
combination of composite control variates. We provide a mathematical expression
capturing this integration of double control variates within FedNCV and present
three theoretical results with corresponding proofs. This unique dual structure
equips FedNCV to address data heterogeneity and scalability issues, thus
potentially paving the way for large-scale applications. Moreover, we tested
FedNCV on six diverse datasets under a Dirichlet distribution with {\alpha} =
0.1, and benchmarked its performance against six SOTA methods, demonstrating
its superiority.
- Abstract(参考訳): 機械学習への分散アプローチである連合学習は、広範なコミュニケーションオーバーヘッド、収束の遅い、不安定な改善といった重要な課題に直面している。
これらの課題は、主に異種クライアントデータ分布による勾配分散に起因する。
そこで我々は,フェデレート学習のための新しいネットワーク制御変数(FedNCV)フレームワークを提案する。
我々は、クライアントレベルとサーバレベルで実装されたFedNCVフレームワークの基本的な制御変数単位として、REINFORCEのLeave-One-Out(RLOO)を採用しています。
クライアントレベルでは、RLOOコントロール変数を使用して局所的な勾配更新を最適化し、データサンプルによって導入された分散を緩和する。
サーバにリレーされると、RLOOベースの推定器はさらに、バイアスのない低分散集約勾配を提供し、堅牢なグローバルアップデートをもたらす。
この双対の応用は複合制御変数の線形結合として定式化される。
我々は、FedNCV内の二重制御変数の統合を捉える数学的表現と、対応する証明を伴う3つの理論的結果を示す。
このユニークな双対構造は、データの不均一性とスケーラビリティの問題に対処するためにFedNCVを装備する。
さらに,Dirichlet分布の6種類のデータセットに対して, {\alpha} = 0.1でFedNCVを試験し,その性能を6つのSOTA法と比較した。
関連論文リスト
- Modality Alignment Meets Federated Broadcasting [9.752555511824593]
フェデレートラーニング(FL)は、ローカルデータを集中化せずに、分散エッジデバイス間でモデルをトレーニングすることで、データのプライバシを保護する強力なアプローチとして登場した。
本稿では,テキストエンコーダをサーバ上に配置し,画像エンコーダをローカルデバイス上で動作させる,モダリティアライメントを利用した新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-24T13:30:03Z) - A Framework for Fine-Tuning LLMs using Heterogeneous Feedback [69.51729152929413]
ヘテロジニアスフィードバックを用いた大規模言語モデル(LLM)の微調整フレームワークを提案する。
まず、不均一なフィードバックデータをSFTやRLHFなどの手法と互換性のある単一の監視形式にまとめる。
次に、この統合されたフィードバックデータセットから、性能向上を得るために高品質で多様なサブセットを抽出する。
論文 参考訳(メタデータ) (2024-08-05T23:20:32Z) - Heterogeneous Federated Learning with Splited Language Model [22.65325348176366]
フェデレート・スプリット・ラーニング(FSL)は、実際には有望な分散学習パラダイムである。
本稿では,前訓練画像変換器(PIT)をFedVと呼ばれる初期モデルとして利用し,トレーニングプロセスの高速化とモデルロバスト性の向上を図る。
我々は、実世界のデータセット、異なる部分的デバイス参加、異種データ分割におけるPITを用いたFSL手法の体系的評価を初めて行った。
論文 参考訳(メタデータ) (2024-03-24T07:33:08Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - Decentralized Sporadic Federated Learning: A Unified Algorithmic Framework with Convergence Guarantees [18.24213566328972]
分散分散学習(DFL)は、(i)モデル更新と(ii)モデルアグリゲーションの両方をクライアントが中央サーバなしで実行するFL設定をキャプチャする。
DSpodFLは、さまざまなシステム設定下でのベースラインと比較して、一貫して速度を達成している。
論文 参考訳(メタデータ) (2024-02-05T19:02:19Z) - Supernet Training for Federated Image Classification under System
Heterogeneity [15.2292571922932]
本研究では,2つのシナリオ,すなわちフェデレーション・オブ・スーパーネット・トレーニング(FedSup)を考えるための新しい枠組みを提案する。
フェデレートラーニング(FL)のモデルアグリゲーション段階でのパラメータの平均化は、スーパーネットトレーニングにおけるウェイトシェアリングとどのように似ているかに着想を得ている。
本フレームワークでは,通信コストの削減とトレーニングオーバーヘッドの低減のために,放送段階のクライアントにサブモデルを送信することで,効率的なアルゴリズム(E-FedSup)を提案する。
論文 参考訳(メタデータ) (2022-06-03T02:21:01Z) - FedAvg with Fine Tuning: Local Updates Lead to Representation Learning [54.65133770989836]
Federated Averaging (FedAvg)アルゴリズムは、クライアントノードでのいくつかのローカルな勾配更新と、サーバでのモデル平均更新の交互化で構成されている。
我々は、FedAvgの出力の一般化の背景には、クライアントのタスク間の共通データ表現を学習する能力があることを示す。
異種データを用いたフェデレーション画像分類におけるFedAvgの表現学習能力を示す実証的証拠も提供する。
論文 参考訳(メタデータ) (2022-05-27T00:55:24Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
フェデレートラーニング(Federated Learning)とは、ローカルに計算されたパラメータの更新を、空間的に分散されたクライアントサイロからトレーニングデータに集約することで、共有サーバモデルによる学習を可能にする分散機械学習アプローチである。
本研究では, 勾配の共分散とヘッセンの幾何学的平均を利用して, シロ間およびシロ内成分の両方を捕捉するフェデレート不変学習一貫性(FedILC)アプローチを提案する。
これは医療、コンピュータビジョン、IoT(Internet of Things)といった様々な分野に関係している。
論文 参考訳(メタデータ) (2022-05-19T03:32:03Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
フェデレートラーニング(FL)では、モデルトレーニングはクライアントに分散し、ローカルモデルは中央サーバによって集約される。
本稿では,各クライアントの差分プライバシ(DP)要件だけでなく,全体としてのトレーニング性能に制約された無線チャネル上でのFLトレーニング遅延を最小限に抑えることを目的とする。
論文 参考訳(メタデータ) (2021-06-20T13:51:18Z) - Exploiting Invariance in Training Deep Neural Networks [4.169130102668252]
動物視覚システムの2つの基本的なメカニズムに触発され、ディープニューラルネットワークのトレーニングに不変性を与える特徴変換技術を紹介します。
結果として得られるアルゴリズムはパラメータチューニングを少なくし、初期学習率1.0でうまくトレーニングし、異なるタスクに簡単に一般化する。
ImageNet、MS COCO、Cityscapesデータセットでテストされた当社の提案手法は、トレーニングにより少ないイテレーションを必要とし、すべてのベースラインを大きなマージンで上回り、小規模および大規模のバッチサイズのトレーニングをシームレスに行い、画像分類、オブジェクト検出、セマンティックセグメンテーションの異なるコンピュータビジョンタスクに適用します。
論文 参考訳(メタデータ) (2021-03-30T19:18:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。