論文の概要: Weakly-Supervised Surgical Phase Recognition
- arxiv url: http://arxiv.org/abs/2310.17209v1
- Date: Thu, 26 Oct 2023 07:54:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-27 21:32:12.681970
- Title: Weakly-Supervised Surgical Phase Recognition
- Title(参考訳): 弱視下外科的位相認識
- Authors: Roy Hirsch, Regev Cohen, Mathilde Caron, Tomer Golany, Daniel
Freedman, Ehud Rivlin
- Abstract要約: 本研究では,グラフ分割の概念と自己教師付き学習を結合して,フレーム単位の位相予測のためのランダムウォーク解を導出する。
腹腔鏡下胆嚢摘出術ビデオのColec80データセットを用いて実験を行い,本法の有効性を確認した。
- 参考スコア(独自算出の注目度): 19.27227976291303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A key element of computer-assisted surgery systems is phase recognition of
surgical videos. Existing phase recognition algorithms require frame-wise
annotation of a large number of videos, which is time and money consuming. In
this work we join concepts of graph segmentation with self-supervised learning
to derive a random-walk solution for per-frame phase prediction. Furthermore,
we utilize within our method two forms of weak supervision: sparse timestamps
or few-shot learning. The proposed algorithm enjoys low complexity and can
operate in lowdata regimes. We validate our method by running experiments with
the public Cholec80 dataset of laparoscopic cholecystectomy videos,
demonstrating promising performance in multiple setups.
- Abstract(参考訳): コンピュータ支援手術システムの重要な要素は手術映像の位相認識である。
既存のフェーズ認識アルゴリズムは、時間とお金がかかる大量のビデオのフレーム毎のアノテーションを必要とする。
本研究では,グラフ分割の概念と自己教師付き学習を結合して,フレーム単位の位相予測のためのランダムウォーク解を導出する。
さらに, この手法では, 分散タイムスタンプと少数ショット学習という, 弱い監督の2つの形態を用いる。
提案アルゴリズムは低複雑性であり,低データ方式で動作可能である。
腹腔鏡下胆嚢摘出術ビデオのColec80データセットを用いて実験を行い,複数の設定で有望な性能を示した。
関連論文リスト
- Efficient Surgical Tool Recognition via HMM-Stabilized Deep Learning [25.146476653453227]
ツール存在検出のためのHMM安定化深層学習手法を提案する。
様々な実験により、提案手法がより低いトレーニングとランニングコストでより良い性能を達成することが確認された。
これらの結果から,過度に複雑化したモデル構造を持つ一般的なディープラーニング手法は,非効率なデータ利用に悩まされる可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-07T15:27:35Z) - A Spatial-Temporal Deformable Attention based Framework for Breast
Lesion Detection in Videos [107.96514633713034]
本稿では,STNet という空間的・時間的変形可能なアテンションベースのフレームワークを提案する。
我々のSTNetは、局所的な空間的時間的特徴融合を行うために、空間的時間的変形可能なアテンションモジュールを導入している。
乳腺病変の超音波画像データセットを用いた実験により,STNetは最先端の検出性能を得ることができた。
論文 参考訳(メタデータ) (2023-09-09T07:00:10Z) - GLSFormer : Gated - Long, Short Sequence Transformer for Step
Recognition in Surgical Videos [57.93194315839009]
本稿では,シーケンスレベルのパッチから時間的特徴を直接学習するための視覚変換器に基づくアプローチを提案する。
本研究では,白内障手術用ビデオデータセットである白内障-101とD99に対するアプローチを広範に評価し,各種の最先端手法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2023-07-20T17:57:04Z) - High Speed Human Action Recognition using a Photonic Reservoir Computer [1.7403133838762443]
我々は,「関心の時間」に基づく貯水池コンピュータの新しい訓練方法を提案する。
我々は,複数のビデオストリームをリアルタイムに処理できる点において,高い精度と速度でタスクを解く。
論文 参考訳(メタデータ) (2023-05-24T16:04:42Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
シーンセグメンテーションを促進するために,新しい擬似ラベル付きクロスビデオコントラスト学習法であるPGV-CLを提案する。
本研究では,ロボット外科手術データセットEndoVis18と白内障手術データセットCaDISについて検討した。
論文 参考訳(メタデータ) (2022-07-20T05:42:19Z) - Multi-frame Feature Aggregation for Real-time Instrument Segmentation in
Endoscopic Video [11.100734994959419]
ビデオフレームの特徴を時間的・空間的に集約するMFFA(Multi-frame Feature Aggregation)モジュールを提案する。
また,1つのラベル付きフレームからランダムに手術用フレームシーケンスを合成し,ネットワークトレーニングを支援する手法を開発した。
論文 参考訳(メタデータ) (2020-11-17T16:27:27Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
本稿では,マルチモーダルグラフネットワーク(MRG-Net)の新たなオンラインアプローチを提案し,視覚情報とキネマティクス情報を動的に統合する。
本手法の有効性は, JIGSAWSデータセット上での最先端の成果で実証された。
論文 参考訳(メタデータ) (2020-11-03T11:00:10Z) - Symmetric Dilated Convolution for Surgical Gesture Recognition [10.699258974625073]
外科的ジェスチャーを自動的に検出・分節する新しい時間的畳み込みアーキテクチャを提案する。
本研究では,長期時間パターンを符号化・復号化するために,自己アテンションモジュールでブリッジされた対称的拡張構造を用いて手法を考案する。
JIGSAWSデータセットからの基本的なロボット縫合タスクに対するアプローチを検証する。
論文 参考訳(メタデータ) (2020-07-13T13:34:48Z) - Learning Motion Flows for Semi-supervised Instrument Segmentation from
Robotic Surgical Video [64.44583693846751]
本研究は,スパースアノテーションを用いたロボット手術ビデオから半教師楽器のセグメンテーションについて検討する。
生成されたデータペアを利用することで、我々のフレームワークはトレーニングシーケンスの時間的一貫性を回復し、強化することができます。
その結果,本手法は最先端の半教師あり手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-06T02:39:32Z) - LRTD: Long-Range Temporal Dependency based Active Learning for Surgical
Workflow Recognition [67.86810761677403]
本稿では,費用対効果の高い手術ビデオ解析のための新しい能動的学習法を提案する。
具体的には,非局所的再帰的畳み込みネットワーク (NL-RCNet) を提案する。
手術ワークフロー認識タスクを実行することで,大規模な手術ビデオデータセット(Cholec80)に対するアプローチを検証する。
論文 参考訳(メタデータ) (2020-04-21T09:21:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。