Towards the decentralized coordination of multiple self-adaptive systems
- URL: http://arxiv.org/abs/2310.17224v1
- Date: Thu, 26 Oct 2023 08:22:35 GMT
- Title: Towards the decentralized coordination of multiple self-adaptive systems
- Authors: Paul-Andrei Dragan, Andreas Metzger, Klaus Pohl
- Abstract summary: When multiple self-adaptive systems share the same environment and have common goals, they may coordinate their adaptations at runtime to avoid conflicts and to satisfy their goals.
We propose CoADAPT, a decentralized coordination technique introducing two types of constraints: preference constraints, expressing local concerns, and consistency constraints, expressing shared concerns.
At runtime, the problem is solved in a decentralized way using distributed constraint optimization algorithms implemented by each self-adaptive system.
- Score: 0.3222802562733786
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: When multiple self-adaptive systems share the same environment and have
common goals, they may coordinate their adaptations at runtime to avoid
conflicts and to satisfy their goals. There are two approaches to coordination.
(1) Logically centralized, where a supervisor has complete control over the
individual self-adaptive systems. Such approach is infeasible when the systems
have different owners or administrative domains. (2) Logically decentralized,
where coordination is achieved through direct interactions. Because the
individual systems have control over the information they share, decentralized
coordination accommodates multiple administrative domains. However, existing
techniques do not account simultaneously for both local concerns, e.g.,
preferences, and shared concerns, e.g., conflicts, which may lead to goals not
being achieved as expected. Our idea to address this shortcoming is to express
both types of concerns within the same constraint optimization problem. We
propose CoADAPT, a decentralized coordination technique introducing two types
of constraints: preference constraints, expressing local concerns, and
consistency constraints, expressing shared concerns. At runtime, the problem is
solved in a decentralized way using distributed constraint optimization
algorithms implemented by each self-adaptive system. As a first step in
realizing CoADAPT, we focus in this work on the coordination of adaptation
planning strategies, traditionally addressed only with centralized techniques.
We show the feasibility of CoADAPT in an exemplar from cloud computing and
analyze experimentally its scalability.
Related papers
- Towards Hypermedia Environments for Adaptive Coordination in Industrial Automation [3.686808512438363]
Electromechanical systems manage physical processes through a network of inter-connected components.
We use autonomous software agents that process semantic descriptions of the system to determine coordination requirements and constraints.
Agents then interact with one another to control the system in a decentralized and coordinated manner.
arXiv Detail & Related papers (2024-06-25T06:21:52Z) - DePAint: A Decentralized Safe Multi-Agent Reinforcement Learning Algorithm considering Peak and Average Constraints [1.1549572298362787]
We propose a momentum-based decentralized gradient policy method, DePAint, to solve the problem.
This is the first privacy-preserving fully decentralized multi-agent reinforcement learning algorithm that considers both peak and average constraints.
arXiv Detail & Related papers (2023-10-22T16:36:03Z) - Adaptive Consensus: A network pruning approach for decentralized
optimization [0.5432724320036953]
We consider network-based decentralized optimization problems, where each node in the network possesses a local function.
The objective is to collectively attain a consensus solution that minimizes the sum of all the local functions.
We propose an adaptive randomized communication-efficient algorithmic framework that reduces the volume of communication.
arXiv Detail & Related papers (2023-09-06T00:28:10Z) - An Adaptive Fuzzy Reinforcement Learning Cooperative Approach for the
Autonomous Control of Flock Systems [4.961066282705832]
This work introduces an adaptive distributed robustness technique for the autonomous control of flock systems.
Its relatively flexible structure is based on online fuzzy reinforcement learning schemes which simultaneously target a number of objectives.
In addition to its resilience in the face of dynamic disturbances, the algorithm does not require more than the agent position as a feedback signal.
arXiv Detail & Related papers (2023-03-17T13:07:35Z) - Optimal Algorithms for Decentralized Stochastic Variational Inequalities [113.43047601775453]
This work concentrates on the decentralized setting, which is increasingly important but not well understood.
We present lower bounds for both communication and local iterations and construct optimal algorithms that match these lower bounds.
Our algorithms are the best among the available not only in the decentralized case, but also in the deterministic and non-distributed literature.
arXiv Detail & Related papers (2022-02-06T13:14:02Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Competing Adaptive Networks [56.56653763124104]
We develop an algorithm for decentralized competition among teams of adaptive agents.
We present an application in the decentralized training of generative adversarial neural networks.
arXiv Detail & Related papers (2021-03-29T14:42:15Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z) - Contradictory Structure Learning for Semi-supervised Domain Adaptation [67.89665267469053]
Current adversarial adaptation methods attempt to align the cross-domain features.
Two challenges remain unsolved: 1) the conditional distribution mismatch and 2) the bias of the decision boundary towards the source domain.
We propose a novel framework for semi-supervised domain adaptation by unifying the learning of opposite structures.
arXiv Detail & Related papers (2020-02-06T22:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.