論文の概要: De-novo Chemical Reaction Generation by Means of Temporarily
Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2310.17341v1
- Date: Thu, 26 Oct 2023 12:15:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-27 20:41:04.888097
- Title: De-novo Chemical Reaction Generation by Means of Temporarily
Convolutional Neural Networks
- Title(参考訳): 時相畳み込みニューラルネットワークによるデノボ化学反応生成
- Authors: Andrei Buin, Hung Yi Chiang, S. Andrew Gadsden, Faraz A. Alderson
- Abstract要約: 本稿では、リカレントニューラルネットワーク(RNN)と一時畳み込みニューラルネットワーク(TCN)の2つの組み合わせを示す。
リカレントニューラルネットワークは自己回帰特性で知られており、SMILES生成への直接適用を伴う言語モデリングで頻繁に使用される。
比較的新しいTCNは、自然言語処理(NLP)に必要な因果性に従いながら、広い受容野を持つ類似特性を有する
異なる微調整プロトコルは、転送学習による関心のデータセットに適用した場合、モデルの生成範囲に大きな影響を与えることが示されている。
- 参考スコア(独自算出の注目度): 3.357271554042638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present here a combination of two networks, Recurrent Neural Networks
(RNN) and Temporarily Convolutional Neural Networks (TCN) in de novo reaction
generation using the novel Reaction Smiles-like representation of reactions
(CGRSmiles) with atom mapping directly incorporated. Recurrent Neural Networks
are known for their autoregressive properties and are frequently used in
language modelling with direct application to SMILES generation. The relatively
novel TCNs possess similar properties with wide receptive field while obeying
the causality required for natural language processing (NLP). The combination
of both latent representations expressed through TCN and RNN results in an
overall better performance compared to RNN alone. Additionally, it is shown
that different fine-tuning protocols have a profound impact on generative scope
of the model when applied on a dataset of interest via transfer learning.
- Abstract(参考訳): 本稿では,リカレントニューラルネットワーク(RNN)と時間畳み込みニューラルネットワーク(TCN)の2つの組み合わせを,新しい反応スマイルズ様反応表現(CGRSmiles)と原子マッピングを直接組み込んだデノボ反応生成に適用する。
リカレントニューラルネットワークは自己回帰特性で知られており、SMILES生成への直接適用を伴う言語モデリングで頻繁に使用される。
比較的新しいTCNは、自然言語処理(NLP)に必要とされる因果性に従いながら、広い受容領域を持つ類似の性質を持つ。
TCNとRNNで表現された2つの潜在表現の組み合わせは、RNN単独と比較して全体的なパフォーマンスが向上する。
さらに、異なる微調整プロトコルが、転送学習による関心のデータセットに適用した場合、モデルの生成範囲に大きな影響を与えることを示した。
関連論文リスト
- Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングの最前線である。
本稿では,SNNのパフォーマンスに革命をもたらす3つの画期的な研究をまとめる。
論文 参考訳(メタデータ) (2024-07-08T23:33:12Z) - Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は神経科学と人工知能において重要なパラダイムとなっている。
近年,深層ニューラルネットワークのネットワーク表現について研究が進められている。
論文 参考訳(メタデータ) (2024-03-19T05:37:26Z) - On The Expressivity of Recurrent Neural Cascades [48.87943990557107]
リカレントニューラルカスケード(Recurrent Neural Cascades、RNC)は、リカレントニューラルネットワークであり、リカレントニューロン間で循環的依存を持たない。
RNCは、グループを実装可能なニューロンを導入することで、すべての正規言語を表現できることを示す。
論文 参考訳(メタデータ) (2023-12-14T15:47:26Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - A comparison between Recurrent Neural Networks and classical machine
learning approaches In Laser induced breakdown spectroscopy [0.8399688944263843]
リカレントニューラルネットワークは、異なるノード間の接続を確立するニューラルネットワークのクラスである。
レーザ誘起分解分光法(LIBS)は、異なるリカレントニューラルネットワークアーキテクチャによるアルミニウム合金の定量分析に用いられている。
論文 参考訳(メタデータ) (2023-04-16T08:26:11Z) - Heterogeneous Recurrent Spiking Neural Network for Spatio-Temporal
Classification [13.521272923545409]
Spi Neural Networksは、人工知能の第3波の脳にインスパイアされた学習モデルとしてしばしば評価される。
本稿では,ビデオ認識タスクのための教師なし学習を用いたヘテロジニアススパイキングニューラルネットワーク(HRSNN)を提案する。
本研究では,時間的バックプロパゲーション訓練による教師付きSNNに類似した性能を実現することができるが,少ない計算量で実現可能であることを示す。
論文 参考訳(メタデータ) (2022-09-22T16:34:01Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
PNN(Polynomial Neural Network)は、高頻度情報を重要視する画像生成と顔認識に特に有効であることが示されている。
これまでの研究では、ニューラルネットワークが低周波関数に対して$textitspectral bias$を示しており、トレーニング中に低周波成分のより高速な学習をもたらすことが示されている。
このような研究に触発されて、我々はPNNのTangent Kernel(NTK)のスペクトル分析を行う。
我々は、最近提案されたPNNのパラメトリゼーションである$Pi$-Netファミリがスピードアップすることを発見した。
論文 参考訳(メタデータ) (2022-02-27T23:12:43Z) - Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and
(gradient) stable architecture for learning long time dependencies [15.2292571922932]
本稿では,リカレントニューラルネットワークのための新しいアーキテクチャを提案する。
提案するRNNは, 2次常微分方程式系の時間分解に基づく。
実験の結果,提案したRNNは,様々なベンチマークによる最先端技術に匹敵する性能を示した。
論文 参考訳(メタデータ) (2020-10-02T12:35:04Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。