Uncertainty-weighted Loss Functions for Improved Adversarial Attacks on
Semantic Segmentation
- URL: http://arxiv.org/abs/2310.17436v1
- Date: Thu, 26 Oct 2023 14:47:10 GMT
- Title: Uncertainty-weighted Loss Functions for Improved Adversarial Attacks on
Semantic Segmentation
- Authors: Kira Maag and Asja Fischer
- Abstract summary: adversarial attacks developed for classification models were shown to be applicable to segmentation models as well.
We present simple uncertainty-based weighting schemes for the loss functions of such attacks.
The weighting schemes can be easily integrated into the loss function of a range of well-known adversarial attackers.
- Score: 16.109860499330562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art deep neural networks have been shown to be extremely
powerful in a variety of perceptual tasks like semantic segmentation. However,
these networks are vulnerable to adversarial perturbations of the input which
are imperceptible for humans but lead to incorrect predictions. Treating image
segmentation as a sum of pixel-wise classifications, adversarial attacks
developed for classification models were shown to be applicable to segmentation
models as well. In this work, we present simple uncertainty-based weighting
schemes for the loss functions of such attacks that (i) put higher weights on
pixel classifications which can more easily perturbed and (ii) zero-out the
pixel-wise losses corresponding to those pixels that are already confidently
misclassified. The weighting schemes can be easily integrated into the loss
function of a range of well-known adversarial attackers with minimal additional
computational overhead, but lead to significant improved perturbation
performance, as we demonstrate in our empirical analysis on several datasets
and models.
Related papers
- Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis [12.133306321357999]
We propose an uncertainty-based method for detecting adversarial attacks on neural networks for semantic segmentation.
We conduct a detailed analysis of uncertainty-based detection of adversarial attacks and various state-of-the-art neural networks.
Our numerical experiments show the effectiveness of the proposed uncertainty-based detection method.
arXiv Detail & Related papers (2024-08-19T14:13:30Z) - Counterfactual Image Generation for adversarially robust and
interpretable Classifiers [1.3859669037499769]
We propose a unified framework leveraging image-to-image translation Generative Adrial Networks (GANs) to produce counterfactual samples.
This is achieved by combining the classifier and discriminator into a single model that attributes real images to their respective classes and flags generated images as "fake"
We show how the model exhibits improved robustness to adversarial attacks, and we show how the discriminator's "fakeness" value serves as an uncertainty measure of the predictions.
arXiv Detail & Related papers (2023-10-01T18:50:29Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant
Semantic Segmentation [50.556961575275345]
We propose a perception-aware fusion framework to promote segmentation robustness in adversarial scenes.
We show that our scheme substantially enhances the robustness, with gains of 15.3% mIOU, compared with advanced competitors.
arXiv Detail & Related papers (2023-08-08T01:55:44Z) - Uncertainty-based Detection of Adversarial Attacks in Semantic
Segmentation [16.109860499330562]
We introduce an uncertainty-based approach for the detection of adversarial attacks in semantic segmentation.
We demonstrate the ability of our approach to detect perturbed images across multiple types of adversarial attacks.
arXiv Detail & Related papers (2023-05-22T08:36:35Z) - Robustness and invariance properties of image classifiers [8.970032486260695]
Deep neural networks have achieved impressive results in many image classification tasks.
Deep networks are not robust to a large variety of semantic-preserving image modifications.
The poor robustness of image classifiers to small data distribution shifts raises serious concerns regarding their trustworthiness.
arXiv Detail & Related papers (2022-08-30T11:00:59Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Meta Adversarial Perturbations [66.43754467275967]
We show the existence of a meta adversarial perturbation (MAP)
MAP causes natural images to be misclassified with high probability after being updated through only a one-step gradient ascent update.
We show that these perturbations are not only image-agnostic, but also model-agnostic, as a single perturbation generalizes well across unseen data points and different neural network architectures.
arXiv Detail & Related papers (2021-11-19T16:01:45Z) - A Weakly-Supervised Semantic Segmentation Approach based on the Centroid
Loss: Application to Quality Control and Inspection [6.101839518775968]
We propose and assess a new weakly-supervised semantic segmentation approach making use of a novel loss function.
The performance of the approach is evaluated against datasets from two different industry-related case studies.
arXiv Detail & Related papers (2020-10-26T09:08:21Z) - Stereopagnosia: Fooling Stereo Networks with Adversarial Perturbations [71.00754846434744]
We show that imperceptible additive perturbations can significantly alter the disparity map.
We show that, when used for adversarial data augmentation, our perturbations result in trained models that are more robust.
arXiv Detail & Related papers (2020-09-21T19:20:09Z) - Adversarial Semantic Data Augmentation for Human Pose Estimation [96.75411357541438]
We propose Semantic Data Augmentation (SDA), a method that augments images by pasting segmented body parts with various semantic granularity.
We also propose Adversarial Semantic Data Augmentation (ASDA), which exploits a generative network to dynamiclly predict tailored pasting configuration.
State-of-the-art results are achieved on challenging benchmarks.
arXiv Detail & Related papers (2020-08-03T07:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.