Eurasian-Scale Experimental Satellite-based Quantum Key Distribution
with Detector Efficiency Mismatch Analysis
- URL: http://arxiv.org/abs/2310.17476v1
- Date: Thu, 26 Oct 2023 15:26:48 GMT
- Title: Eurasian-Scale Experimental Satellite-based Quantum Key Distribution
with Detector Efficiency Mismatch Analysis
- Authors: Aleksandr V. Khmelev, Alexey V. Duplinsky, Ruslan M. Bakhshaliev, Egor
I. Ivchenko, Liubov V. Pismeniuk, Vladimir F. Mayboroda, Ivan S. Nesterov,
Arkadiy N. Chernov, Anton S. Trushechkin, Evgeniy O. Kiktenko, Vladimir L.
Kurochkin, Aleksey K. Fedorov
- Abstract summary: We report on the results of the 600-mm-aperture ground station design which has enabled the establishment of a quantum-secured link between the Zvenigorod and Nanshan ground stations using the Micius satellite.
As a result of a quantum communications session, an overall sifted key of 2.5 Mbits and a total final key length of 310 kbits have been obtained.
- Score: 32.33017977520031
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Micius satellite is the pioneering initiative to demonstrate quantum
teleportation, entanglement distribution, quantum key distribution (QKD), and
quantum-secured communications experiments at the global scale. In this work,
we report on the results of the 600-mm-aperture ground station design which has
enabled the establishment of a quantum-secured link between the Zvenigorod and
Nanshan ground stations using the Micius satellite. As a result of a quantum
communications session, an overall sifted key of 2.5 Mbits and a total final
key length of 310 kbits have been obtained. We present an extension of the
security analysis of the realization of satellite-based QKD decoy-state
protocol by taking into account the effect of the detection-efficiency mismatch
for four detectors. We also simulate the QKD protocol for the satellite passage
and by that validate our semi-empirical model for a realistic receiver, which
is in good agreement with the experimental data. Our results pave the way to
the considerations of realistic imperfection of the QKD systems, which are
important in the context of their practical security.
Related papers
- End-to-End Demonstration for CubeSatellite Quantum Key Distribution [0.0]
We investigate the feasibility of satellite-based quantum key exchange using low-cost compact nano-satellites.
This paper demonstrates the first prototype of system level quantum key distribution aimed at the Cube satellite scenario.
arXiv Detail & Related papers (2023-12-04T16:25:06Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Numerical Security Analysis of Three-State Quantum Key Distribution
Protocol with Realistic Devices [7.142344346172878]
Quantum key distribution (QKD) is a secure communication method that utilizes the principles of quantum mechanics to establish secret keys.
We successfully solve a long-standing open question of the security analysis for the three-state QKD protocol with realistic devices.
arXiv Detail & Related papers (2023-09-13T02:54:19Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - LEO small satellite QKD downlink performance: QuantSat-PT case study [0.0]
We model and simulate the performance of a quantum key distribution (QKD) downlink from a low earth orbit (LEO) small satellite to an optical ground station (OGS)
We find a consistent set of values for the performance envelope that resolves ambiguities of mission experimental data.
arXiv Detail & Related papers (2022-09-21T12:08:14Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - First demonstration of a post-quantum key-exchange with a nanosatellite [58.579141089302816]
We demonstrate a post-quantum key-exchange with the nanosatellite SpooQy-1 in low Earth orbit using Kyber-512.
This implementation demonstrates the feasibility of a quantum-safe authenticated key-exchange and encryption system on SWaP constrained nanosatellites.
arXiv Detail & Related papers (2022-06-02T10:45:27Z) - A CubeSat platform for space based quantum key distribution [62.997667081978825]
We report on the follow-up mission of SpooQy-1, a 3U CubeSat that successfully demonstrated the generation of polarization-entangled photons in orbit.
The next iteration of the mission will showcase satellite-to-ground quantum key distribution based on a compact source of polarization-entangled photon-pairs.
We briefly describe the design of the optical ground station that we are currently building in Singapore for receiving the quantum signal.
arXiv Detail & Related papers (2022-04-23T06:28:43Z) - BBM92 quantum key distribution over a free space dusty channel of 200
meters [1.1416499867566623]
This work reports the implementation of BBM92 protocol, an entanglement-based QKD protocol over 200 m distance.
Results show the effect of atmospheric aerosols on sift key rate, and eventually, secure key rate.
arXiv Detail & Related papers (2021-12-22T15:34:13Z) - Finite key effects in satellite quantum key distribution [0.0]
Satellite quantum communication overcomes optical fibre range limitations.
First realisations of satellite quantum key distribution (SatQKD) being rapidly developed.
limited transmission times between satellite and ground station severely constrains the amount of secret key due to finite-block size effects.
We quantify practical SatQKD performance limits and examine the effects of link efficiency, background light, source quality, and overpass to estimate long-term key generation capacity.
arXiv Detail & Related papers (2020-12-14T18:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.