論文の概要: An Open Source Data Contamination Report for Large Language Models
- arxiv url: http://arxiv.org/abs/2310.17589v3
- Date: Mon, 29 Jan 2024 02:11:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 21:35:34.815372
- Title: An Open Source Data Contamination Report for Large Language Models
- Title(参考訳): 大規模言語モデルのためのオープンソースデータ汚染レポート
- Authors: Yucheng Li, Frank Guerin, Chenghua Lin
- Abstract要約: 本稿では,15以上のポピュラーな大言語モデルを対象とした広範囲なデータ汚染レポートを提案する。
我々はまた、コミュニティがカスタマイズされたデータやモデル上で汚染分析を行うことを可能にするオープンソースのパイプラインも導入した。
- 参考スコア(独自算出の注目度): 21.553915781660905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data contamination in model evaluation has become increasingly prevalent with
the growing popularity of large language models. It allows models to "cheat"
via memorisation instead of displaying true capabilities. Therefore,
contamination analysis has become an crucial part of reliable model evaluation
to validate results. However, existing contamination analysis is usually
conducted internally by large language model developers and often lacks
transparency and completeness. This paper presents an extensive data
contamination report for over 15 popular large language models across six
popular multiple-choice QA benchmarks. We also introduce an open-source
pipeline that enables the community to perform contamination analysis on
customised data and models. Our experiments reveal varying contamination levels
ranging from 1\% to 45\% across benchmarks, with the contamination degree
increasing rapidly over time. Performance analysis of large language models
indicates that data contamination does not necessarily lead to increased model
metrics: while significant accuracy boosts of up to 14\% and 7\% are observed
on contaminated C-Eval and Hellaswag benchmarks, only a minimal increase is
noted on contaminated MMLU. We also find larger models seem able to gain more
advantages than smaller models on contaminated test sets.
- Abstract(参考訳): モデル評価におけるデータ汚染は、大規模言語モデルの普及に伴い、ますます広まりつつある。
モデルが本当の能力を示すのではなく、記憶を通じて“焼く”ことができるのです。
そのため, 汚染分析は信頼性モデル評価において重要な要素となり, 評価結果が得られた。
しかし、既存の汚染分析は通常、大きな言語モデル開発者によって内部で行われ、透明性と完全性に欠けることが多い。
本稿では,6つの人気多目的QAベンチマークにおける15以上の人気大言語モデルに対する広範なデータ汚染レポートを提案する。
また,コミュニティがカスタマイズされたデータやモデルに対して汚染分析を行うことのできる,オープンソースのパイプラインも導入する。
実験の結果, 汚染レベルは, ベンチマークで1\%から45\%まで変化し, 汚染度は経時的に急速に増加することが明らかとなった。
汚染されたC-EvalとHellaswagのベンチマークでは、最大14\%と7\%の大幅な精度向上が観測されているが、汚染されたMMLUでは最小限の増加しか報告されていない。
また、汚染されたテストセットの小さいモデルよりも大きなモデルの方が利点があるようです。
関連論文リスト
- LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content [62.816876067499415]
我々は、科学的ArXiv論文に基づくスケーラブルな進化型ライブベンチマークであるLiveXivを提案する。
LiveXivは、任意のタイムスタンプでドメイン固有の原稿にアクセスし、視覚的な問合せペアを自動的に生成することを提案する。
ベンチマークの最初のバージョンで、複数のオープンでプロプライエタリなLMM(Large Multi-modal Models)をベンチマークし、その挑戦的な性質を示し、モデルの真の能力を明らかにする。
論文 参考訳(メタデータ) (2024-10-14T17:51:23Z) - PaCoST: Paired Confidence Significance Testing for Benchmark Contamination Detection in Large Language Models [41.772263447213234]
大規模言語モデル(LLM)は膨大な量のデータに基づいて訓練されることが知られており、意図的または故意によく使われるベンチマークのデータを含むことがある。
このインクルージョンは、モデルリーダーボードの不正な高いスコアにつながるが、現実のアプリケーションではパフォーマンスに失望する。
LLMのベンチマーク汚染を効果的に検出するPaired Confidence Significance TestingであるPaCoSTを紹介する。
論文 参考訳(メタデータ) (2024-06-26T13:12:40Z) - ConStat: Performance-Based Contamination Detection in Large Language Models [7.305342793164905]
コンスタット(ConStat)は、参照モデルの集合に対する一次ベンチマークと参照ベンチマークのパフォーマンスを比較することで、汚染を確実に検出し、定量化する統計手法である。
多様なモデルアーキテクチャ,ベンチマーク,汚染シナリオの広範な評価において,ConStatの有効性を実証する。
論文 参考訳(メタデータ) (2024-05-25T15:36:37Z) - How Much are Large Language Models Contaminated? A Comprehensive Survey and the LLMSanitize Library [68.10605098856087]
大規模言語モデル(LLM)は、ビジネスアプリケーションやAIの資金調達でますます利用されている。
LLMの性能は、データへの以前の露出のために、少なくとも部分的には高性能である可能性があるため、もはや信頼性が低い可能性がある。
我々はLLMSanitizeというオープンソースのPythonライブラリをリリースし、主要な汚染検知アルゴリズムを実装した。
論文 参考訳(メタデータ) (2024-03-31T14:32:02Z) - Evading Data Contamination Detection for Language Models is (too) Easy [9.024665800235855]
大規模な言語モデルは、必然的に公開ベンチマークによる汚染につながる可能性がある。
本稿では,モデルプロバイダと汚染検出手法の両方の分類を提案する。
これは、私たちがEALで活用している既存のメソッドの脆弱性を明らかにします。
論文 参考訳(メタデータ) (2024-02-05T09:10:32Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
業界関係者は、モデルが数億台のマシンにデプロイされているため、マルウェア検出精度の小さな改善に気を配っている。
学術研究はしばしば1万のサンプルの順序で公開データセットに制限される。
利用可能なサンプルのプールから難易度ベンチマークを生成するためのアプローチを考案する。
論文 参考訳(メタデータ) (2023-12-25T21:25:55Z) - Rethinking Benchmark and Contamination for Language Models with
Rephrased Samples [49.18977581962162]
大規模な言語モデルは、これまで人間が生成したすべてのデータに基づいて、ますます訓練されている。
多くの人は、事前トレーニングや微調整のデータセットが汚染される可能性があるとして、公開ベンチマークの信頼性を懸念している。
論文 参考訳(メタデータ) (2023-11-08T17:35:20Z) - Estimating Contamination via Perplexity: Quantifying Memorisation in
Language Model Evaluation [2.4173424114751114]
本稿では,全トレーニングセットにアクセスせずに汚染を定量化する新しい手法を提案する。
我々の分析は、一般的な読み理解、要約ベンチマークにおいて、最近の基礎モデルの顕著な記憶の証拠を提供する一方で、複数の選択が汚染されていないように見える。
論文 参考訳(メタデータ) (2023-09-19T15:02:58Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
抽象的な要約は、事前訓練された言語モデルと大規模データセットの可用性のおかげで、近年で新たな関心を集めている。
有望な結果にもかかわらず、現在のモデルはいまだに現実的に矛盾した要約を生み出すことに苦しむ。
事実整合性評価モデルを利用して、多言語要約を改善する。
論文 参考訳(メタデータ) (2022-12-20T19:52:41Z) - CHEER: Rich Model Helps Poor Model via Knowledge Infusion [69.23072792708263]
我々は、そのようなリッチなモデルを伝達可能な表現に簡潔に要約できる知識注入フレームワークCHEERを開発した。
実験の結果、CHEERは複数の生理的データセットのマクロF1スコアにおいて、ベースラインを5.60%から46.80%上回った。
論文 参考訳(メタデータ) (2020-05-21T21:44:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。