SPA: A Graph Spectral Alignment Perspective for Domain Adaptation
- URL: http://arxiv.org/abs/2310.17594v2
- Date: Fri, 27 Oct 2023 08:40:15 GMT
- Title: SPA: A Graph Spectral Alignment Perspective for Domain Adaptation
- Authors: Zhiqing Xiao, Haobo Wang, Ying Jin, Lei Feng, Gang Chen, Fei Huang,
Junbo Zhao
- Abstract summary: Unsupervised domain adaptation (UDA) is a pivotal form in machine learning to extend the in-domain model to the distinctive target domains where the data distributions differ.
Most prior works focus on capturing the inter-domain transferability but largely overlook rich intra-domain structures, which empirically results in even worse discriminability.
We introduce a novel graph SPectral Alignment (SPA) framework to tackle the tradeoff.
- Score: 41.89873161315133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation (UDA) is a pivotal form in machine learning to
extend the in-domain model to the distinctive target domains where the data
distributions differ. Most prior works focus on capturing the inter-domain
transferability but largely overlook rich intra-domain structures, which
empirically results in even worse discriminability. In this work, we introduce
a novel graph SPectral Alignment (SPA) framework to tackle the tradeoff. The
core of our method is briefly condensed as follows: (i)-by casting the DA
problem to graph primitives, SPA composes a coarse graph alignment mechanism
with a novel spectral regularizer towards aligning the domain graphs in
eigenspaces; (ii)-we further develop a fine-grained message propagation module
-- upon a novel neighbor-aware self-training mechanism -- in order for enhanced
discriminability in the target domain. On standardized benchmarks, the
extensive experiments of SPA demonstrate that its performance has surpassed the
existing cutting-edge DA methods. Coupled with dense model analysis, we
conclude that our approach indeed possesses superior efficacy, robustness,
discriminability, and transferability. Code and data are available at:
https://github.com/CrownX/SPA.
Related papers
- Gradual Domain Adaptation for Graph Learning [13.143891794601162]
We present a graph gradual domain adaptation (GGDA) framework with the construction of a compact domain sequence.
Our approach starts with an efficient generation of knowledge-preserving intermediate graphs over the Fused Gromov-Wasserstein (FGW) metric.
Our framework concretizes the intractable inter-domain distance $W_p(mu_t,mu_t+1)$ via implementable upper and lower bounds.
arXiv Detail & Related papers (2025-01-29T06:48:59Z) - Towards Cross-domain Few-shot Graph Anomaly Detection [6.732699844225434]
Cross-domain few-shot graph anomaly detection (GAD) is nontrivial owing to inherent data distribution discrepancies between the source and target domains.
We propose a simple and effective framework, termed CDFS-GAD, specifically designed to tackle the aforementioned challenges.
arXiv Detail & Related papers (2024-10-11T08:47:25Z) - Generative Domain Adaptation for Face Anti-Spoofing [38.12738183385737]
Face anti-spoofing approaches based on unsupervised domain adaption (UDA) have drawn growing attention due to promising performances for target scenarios.
Most existing UDA FAS methods typically fit the trained models to the target domain via aligning the distribution of semantic high-level features.
We propose a novel perspective of UDA FAS that directly fits the target data to the models, stylizes the target data to the source-domain style via image translation, and further feeds the stylized data into the well-trained source model for classification.
arXiv Detail & Related papers (2022-07-20T16:24:57Z) - Relation Matters: Foreground-aware Graph-based Relational Reasoning for
Domain Adaptive Object Detection [81.07378219410182]
We propose a new and general framework for DomainD, named Foreground-aware Graph-based Reasoning (FGRR)
FGRR incorporates graph structures into the detection pipeline to explicitly model the intra- and inter-domain foreground object relations.
Empirical results demonstrate that the proposed FGRR exceeds the state-of-the-art on four DomainD benchmarks.
arXiv Detail & Related papers (2022-06-06T05:12:48Z) - Amplitude Spectrum Transformation for Open Compound Domain Adaptive
Semantic Segmentation [62.68759523116924]
Open compound domain adaptation (OCDA) has emerged as a practical adaptation setting.
We propose a novel feature space Amplitude Spectrum Transformation (AST)
arXiv Detail & Related papers (2022-02-09T05:40:34Z) - Geometry-Aware Unsupervised Domain Adaptation [12.298214579392129]
Unsupervised Domain Adaptation (UDA) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain in the presence of dataset shift.
Most existing methods cannot address the domain alignment and class discrimination well, which may distort the intrinsic data structure for downstream tasks.
We propose a novel geometry-aware model to learn the transferability and discriminability simultaneously via nuclear norm optimization.
arXiv Detail & Related papers (2021-12-21T08:45:42Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Generalizable Representation Learning for Mixture Domain Face
Anti-Spoofing [53.82826073959756]
Face anti-spoofing approach based on domain generalization(DG) has drawn growing attention due to its robustness forunseen scenarios.
We propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels.
To overcome the limitation, we propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels.
arXiv Detail & Related papers (2021-05-06T06:04:59Z) - Domain Adaptation in LiDAR Semantic Segmentation by Aligning Class
Distributions [9.581605678437032]
This work addresses the problem of unsupervised domain adaptation for LiDAR semantic segmentation models.
Our approach combines novel ideas on top of the current state-of-the-art approaches and yields new state-of-the-art results.
arXiv Detail & Related papers (2020-10-23T08:52:15Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.