Towards Cross-domain Few-shot Graph Anomaly Detection
- URL: http://arxiv.org/abs/2410.08629v1
- Date: Fri, 11 Oct 2024 08:47:25 GMT
- Title: Towards Cross-domain Few-shot Graph Anomaly Detection
- Authors: Jiazhen Chen, Sichao Fu, Zhibin Zhang, Zheng Ma, Mingbin Feng, Tony S. Wirjanto, Qinmu Peng,
- Abstract summary: Cross-domain few-shot graph anomaly detection (GAD) is nontrivial owing to inherent data distribution discrepancies between the source and target domains.
We propose a simple and effective framework, termed CDFS-GAD, specifically designed to tackle the aforementioned challenges.
- Score: 6.732699844225434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot graph anomaly detection (GAD) has recently garnered increasing attention, which aims to discern anomalous patterns among abundant unlabeled test nodes under the guidance of a limited number of labeled training nodes. Existing few-shot GAD approaches typically adopt meta-training methods trained on richly labeled auxiliary networks to facilitate rapid adaptation to target networks that possess sparse labels. However, these proposed methods often assume that the auxiliary and target networks exist in the same data distributions-an assumption rarely holds in practical settings. This paper explores a more prevalent and complex scenario of cross-domain few-shot GAD, where the goal is to identify anomalies within sparsely labeled target graphs using auxiliary graphs from a related, yet distinct domain. The challenge here is nontrivial owing to inherent data distribution discrepancies between the source and target domains, compounded by the uncertainties of sparse labeling in the target domain. In this paper, we propose a simple and effective framework, termed CDFS-GAD, specifically designed to tackle the aforementioned challenges. CDFS-GAD first introduces a domain-adaptive graph contrastive learning module, which is aimed at enhancing cross-domain feature alignment. Then, a prompt tuning module is further designed to extract domain-specific features tailored to each domain. Moreover, a domain-adaptive hypersphere classification loss is proposed to enhance the discrimination between normal and anomalous instances under minimal supervision, utilizing domain-sensitive norms. Lastly, a self-training strategy is introduced to further refine the predicted scores, enhancing its reliability in few-shot settings. Extensive experiments on twelve real-world cross-domain data pairs demonstrate the effectiveness of the proposed CDFS-GAD framework in comparison to various existing GAD methods.
Related papers
- Utilizing Graph Generation for Enhanced Domain Adaptive Object Detection [1.9846381198210663]
The problem of Domain Adaptive in the field of Object Detection involves the transfer of object detection models from labeled source domains to unannotated target domains.
Recent advancements in this field aim to address domain discrepancies by aligning pixel-pairs across domains within a non-Euclidean graphical space.
Despite their remarkable achievements, these methods often use coarse semantic representations to model graphs.
arXiv Detail & Related papers (2024-04-23T03:11:08Z) - Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation [108.40945109477886]
We propose a novel SSDA approach named Graph-based Adaptive Betweenness Clustering (G-ABC) for achieving categorical domain alignment.
Our method outperforms previous state-of-the-art SSDA approaches, demonstrating the superiority of the proposed G-ABC algorithm.
arXiv Detail & Related papers (2024-01-21T09:57:56Z) - Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
Opinion target extraction (OTE) or aspect extraction (AE) is a fundamental task in opinion mining.
Recent work focus on cross-domain OTE, which is typically encountered in real-world scenarios.
We propose a new SSL approach that opts for selecting target samples whose model output from a domain-specific teacher and student network disagrees on the unlabelled target data.
arXiv Detail & Related papers (2023-02-28T16:31:17Z) - Label Alignment Regularization for Distribution Shift [63.228879525056904]
Recent work has highlighted the label alignment property (LAP) in supervised learning, where the vector of all labels in the dataset is mostly in the span of the top few singular vectors of the data matrix.
We propose a regularization method for unsupervised domain adaptation that encourages alignment between the predictions in the target domain and its top singular vectors.
We report improved performance over domain adaptation baselines in well-known tasks such as MNIST-USPS domain adaptation and cross-lingual sentiment analysis.
arXiv Detail & Related papers (2022-11-27T22:54:48Z) - Domain Generalization through the Lens of Angular Invariance [44.76809026901016]
Domain generalization (DG) aims at generalizing a classifier trained on multiple source domains to an unseen target domain with domain shift.
We propose a novel deep DG method called Angular Invariance Domain Generalization Network (AIDGN)
arXiv Detail & Related papers (2022-10-28T02:05:38Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Generalizable Representation Learning for Mixture Domain Face
Anti-Spoofing [53.82826073959756]
Face anti-spoofing approach based on domain generalization(DG) has drawn growing attention due to its robustness forunseen scenarios.
We propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels.
To overcome the limitation, we propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels.
arXiv Detail & Related papers (2021-05-06T06:04:59Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
Partial domain adaptation aims to adapt knowledge from a larger and more diverse source domain to a smaller target domain with less number of classes.
Recent practice on domain adaptation manages to extract effective features by incorporating the pseudo labels for the target domain.
It is essential to align target data with only a small set of source data.
arXiv Detail & Related papers (2020-08-26T03:18:53Z) - Unsupervised Domain Adaptation via Structurally Regularized Deep
Clustering [35.008158504090176]
Unsupervised domain adaptation (UDA) is to make predictions for unlabeled data on a target domain, given labeled data on a source domain whose distribution shifts from the target one.
We propose to directly uncover the intrinsic target discrimination via discriminative clustering of target data.
We term our proposed method as Structurally Regularized Deep Clustering (SRDC), where we also enhance target discrimination with clustering of intermediate network features.
arXiv Detail & Related papers (2020-03-19T07:26:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.