論文の概要: An Approach for Efficient Neural Architecture Search Space Definition
- arxiv url: http://arxiv.org/abs/2310.17669v1
- Date: Wed, 25 Oct 2023 08:07:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-30 16:28:16.613137
- Title: An Approach for Efficient Neural Architecture Search Space Definition
- Title(参考訳): 効率的なニューラルネットワーク探索空間定義へのアプローチ
- Authors: L\'eo Pouy (ESTACA'Lab), Fouad Khenfri (ESTACA'Lab), Patrick Leserf
(ESTACA'Lab), Chokri Mraidha (LIST (CEA)), Cherif Larouci (ESTACA'Lab)
- Abstract要約: 本稿では, 理解や操作が容易な新しいセルベース階層型検索空間を提案する。
提案手法の目的は,検索時間を最適化し,CNNアーキテクチャのほとんどの状態を扱うのに十分な一般性を得ることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As we advance in the fast-growing era of Machine Learning, various new and
more complex neural architectures are arising to tackle problem more
efficiently. On the one hand their efficient usage requires advanced knowledge
and expertise, which is most of the time difficult to find on the labor market.
On the other hand, searching for an optimized neural architecture is a
time-consuming task when it is performed manually using a trial and error
approach. Hence, a method and a tool support is needed to assist users of
neural architectures, leading to an eagerness in the field of Automatic Machine
Learning (AutoML). When it comes to Deep Learning, an important part of AutoML
is the Neural Architecture Search (NAS). In this paper, we propose a novel
cell-based hierarchical search space, easy to comprehend and manipulate. The
objectives of the proposed approach are to optimize the search-time and to be
general enough to handle most of state of the art Convolutional Neural Networks
(CNN) architectures.
- Abstract(参考訳): 私たちが急速に成長する機械学習の時代に進むにつれ、様々な新しい複雑なニューラルネットワークが問題にもっと効率的に取り組み始めている。
一方で、それらの効率的な利用には高度な知識と専門知識が必要であり、労働市場で見つけるのが困難である。
一方、最適化されたニューラルネットワークの探索は、試行錯誤アプローチを用いて手動で行う場合の時間を要する作業である。
したがって、ニューラルネットワークのユーザを支援するための方法とツールサポートが必要であり、Automatic Machine Learning(AutoML)の分野における熱意に繋がる。
ディープラーニングに関しては、AutoMLの重要な部分はNeural Architecture Search(NAS)である。
本稿では,理解や操作が容易な新しいセルベース階層型検索空間を提案する。
提案手法の目的は,検索時間の最適化と,CNN(Convolutional Neural Networks)アーキテクチャの最先端処理に十分な汎用性を実現することである。
関連論文リスト
- Neural Architecture Search: Insights from 1000 Papers [50.27255667347091]
ニューラルアーキテクチャサーチの組織的で包括的なガイドを提供する。
検索空間、アルゴリズム、スピードアップのテクニックを分類する。
ベンチマークやベストプラクティス,その他の調査,オープンソースライブラリなどのリソースについて論じる。
論文 参考訳(メタデータ) (2023-01-20T18:47:24Z) - Neural Architecture Search for Speech Emotion Recognition [72.1966266171951]
本稿では,SERモデルの自動構成にニューラルアーキテクチャサーチ(NAS)技術を適用することを提案する。
NASはモデルパラメータサイズを維持しながらSER性能(54.89%から56.28%)を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-03-31T10:16:10Z) - Accelerating Neural Architecture Exploration Across Modalities Using
Genetic Algorithms [5.620334754517149]
多目的アーキテクチャ探索を加速するために, 遺伝的アルゴリズムと軽量に訓練された客観予測器を反復サイクルで組み合わせる方法を示す。
NASの研究はコンピュータビジョンのタスクを中心に行われており、最近になって自然言語処理の急速な発展など他のモダリティも深く研究されている。
論文 参考訳(メタデータ) (2022-02-25T20:01:36Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
ディープラーニングは、ニューラルネットワークアーキテクチャエンジニアリングに対する需要の高まりにつながっている。
ニューラルネットワーク検索(NAS)は、手動ではなく、データ駆動方式でニューラルネットワークアーキテクチャを自動設計することを目的としている。
NASはコンピュータビジョンの幅広い問題に適用されている。
論文 参考訳(メタデータ) (2022-02-15T08:06:50Z) - Improving the sample-efficiency of neural architecture search with
reinforcement learning [0.0]
この作業では、Automated Machine Learning(AutoML)の領域にコントリビュートしたいと思っています。
我々の焦点は、最も有望な研究方向の一つ、強化学習である。
児童ネットワークの検証精度は、コントローラを訓練するための報奨信号として機能する。
我々は、これをより現代的で複雑なアルゴリズムであるPPOに修正することを提案する。
論文 参考訳(メタデータ) (2021-10-13T14:30:09Z) - Conceptual Expansion Neural Architecture Search (CENAS) [1.3464152928754485]
概念拡張ニューラルアーキテクチャサーチ(CENAS)という手法を提案する。
サンプル効率が高く、計算的創造性にインスパイアされたトランスファーラーニングアプローチとニューラルアーキテクチャサーチを組み合わせたものだ。
新しいモデルのパラメータを近似するために、既存の重みを転送することで、素早いアーキテクチャ探索よりも高速なモデルを見つける。
論文 参考訳(メタデータ) (2021-10-07T02:29:26Z) - Efficient Neural Architecture Search with Performance Prediction [0.0]
ニューラルアーキテクチャ検索を使用して、目前にあるタスクに最適なネットワークアーキテクチャを見つけます。
既存のNASアルゴリズムは、スクラッチから完全にトレーニングすることで、新しいアーキテクチャの適合性を評価する。
サンプルアーキテクチャの評価を高速化するために,エンドツーエンドのオフライン性能予測器を提案する。
論文 参考訳(メタデータ) (2021-08-04T05:44:16Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
本稿では,分析者がドメイン知識を注入することで,解のサブグラフ空間を効果的に構築し,ネットワーク探索をガイドするフレームワークを提案する。
このテクニックを反復的に適用することで、アナリストは、与えられたアプリケーションに対して最高のパフォーマンスのニューラルネットワークアーキテクチャに収束することができる。
論文 参考訳(メタデータ) (2020-09-28T01:48:45Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。