論文の概要: Consistent End-to-End Estimation for Counterfactual Fairness
- arxiv url: http://arxiv.org/abs/2310.17687v2
- Date: Thu, 02 Oct 2025 16:11:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:19.369637
- Title: Consistent End-to-End Estimation for Counterfactual Fairness
- Title(参考訳): 対実的公平性に対する一貫したエンドツーエンド推定
- Authors: Yuchen Ma, Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel,
- Abstract要約: 本稿では, 対実フェアネスの予測を行うための新しい対実フェアネス予測器を提案する。
我々は,本手法が対実公正性の概念を確実にするのに有効であることを理論的に保証する。
- 参考スコア(独自算出の注目度): 56.9060492313073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fairness in predictions is of direct importance in practice due to legal, ethical, and societal reasons. This is often accomplished through counterfactual fairness, which ensures that the prediction for an individual is the same as that in a counterfactual world under a different sensitive attribute. However, achieving counterfactual fairness is challenging as counterfactuals are unobservable, and, because of that, existing baselines for counterfactual fairness do not have theoretical guarantees. In this paper, we propose a novel counterfactual fairness predictor for making predictions under counterfactual fairness. Here, we follow the standard counterfactual fairness setting and directly learn the counterfactual distribution of the descendants of the sensitive attribute via tailored neural networks, which we then use to enforce fair predictions through a novel counterfactual mediator regularization. Unique to our work is that we provide theoretical guarantees that our method is effective in ensuring the notion of counterfactual fairness. We further compare the performance across various datasets, where our method achieves state-of-the-art performance.
- Abstract(参考訳): 予測の公正性は、法的、倫理的、社会的理由により、実践において直接的に重要である。
これはしばしば反事実的公正(英語版)によって達成され、これは個人に対する予測が異なる敏感な属性の下での反事実的世界と同一であることを保証する。
しかし、カウンターファクトフェアネスを達成することは、カウンターファクトフェアネスが観測不可能であるため困難であり、そのため、既存のカウンターファクトフェアネスのベースラインには理論的保証がない。
本稿では,反実的公正な予測を行うための新しい反実的公正予測器を提案する。
ここでは、標準の反ファクト的公正設定に従い、セシリティー属性の子孫の反ファクト的分布を直接ニューラルネットワークで学習し、新しい反ファクト的仲介者正規化を通じて公正な予測を行う。
我々の研究に共通しているのは、我々の方法が反事実的公平性の概念を確実にするのに有効であるという理論的保証を提供することである。
さらに,本手法が最先端の性能を実現するため,各種データセットのパフォーマンスを比較した。
関連論文リスト
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - RobustFair: Adversarial Evaluation through Fairness Confusion Directed
Gradient Search [8.278129731168127]
ディープニューラルネットワーク(DNN)は、様々な敵の摂動に対する脆弱性のため、しばしば課題に直面している。
本稿では, 偽りや偏りのある摂動を受ける場合のDNNの正確な公平性を評価するための新しいアプローチであるRobustFairを紹介する。
論文 参考訳(メタデータ) (2023-05-18T12:07:29Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
現実世界に展開された機械学習アルゴリズムが不公平さや意図しない社会的結果をもたらすことはないことを保証することが重要である。
本稿では,カーネルHilbert Spacesの相互共分散演算子上に構築されたフェアネス尺度であるFairCOCCOを紹介する。
実世界のデータセットにおける予測能力と公正性のバランスをとる上で、最先端技術に対する一貫した改善を実証的に示す。
論文 参考訳(メタデータ) (2022-11-11T11:28:46Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - FETA: Fairness Enforced Verifying, Training, and Predicting Algorithms
for Neural Networks [9.967054059014691]
ニューラルネットワークモデルの個々の公正性を検証し、トレーニングし、保証する問題について検討する。
フェアネスを強制する一般的なアプローチは、フェアネスの概念をモデルのパラメータに関する制約に変換することである。
本研究では,予測時の公正性制約を確実に実施するための逆例誘導後処理手法を開発した。
論文 参考訳(メタデータ) (2022-06-01T15:06:11Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
加速度予測感度は、入力特徴の摂動に対するモデルの予測感度に基づいて、機械学習モデルの公正度を測定する。
この計量は、群フェアネス(統計パリティ)と個人フェアネスという特定の概念と理論的に関連付けられることを示す。
論文 参考訳(メタデータ) (2022-03-16T15:00:33Z) - Prediction Sensitivity: Continual Audit of Counterfactual Fairness in
Deployed Classifiers [2.0625936401496237]
従来のグループフェアネスのメトリクスは個人に対する差別を見逃しかねず、デプロイ後に適用するのが困難である。
本稿では,デプロイされた分類器における対実的公正性の連続的な監査手法である予測感度について述べる。
実証実験の結果,予測感度は反実的公正さの違反を検出するのに有効であることが示された。
論文 参考訳(メタデータ) (2022-02-09T15:06:45Z) - Learning Fair Node Representations with Graph Counterfactual Fairness [56.32231787113689]
以上の事実から導かれるバイアスを考慮したグラフ反事実公正性を提案する。
我々は各ノードとその周辺住民の感度特性の摂動に対応する反事実を生成する。
我々のフレームワークはグラフの反ファクトフェアネスにおける最先端のベースラインよりも優れています。
論文 参考訳(メタデータ) (2022-01-10T21:43:44Z) - Fair Normalizing Flows [10.484851004093919]
FNF(Fair Normalizing Flows)は、学習された表現に対してより厳密な公正性を保証する新しい手法である。
FNFの主な利点は、その正確な確率計算により、潜在的に逆下流予測器の最大不公平性の保証が得られることである。
我々は,FNFが様々なグループフェアネスの概念を強制する上での有効性を実験的に示すとともに,解釈可能性や伝達学習といった他の魅力的な特性も示す。
論文 参考訳(メタデータ) (2021-06-10T17:35:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。