The impact of responding to patient messages with large language model
assistance
- URL: http://arxiv.org/abs/2310.17703v2
- Date: Wed, 29 Nov 2023 19:10:58 GMT
- Title: The impact of responding to patient messages with large language model
assistance
- Authors: Shan Chen, Marco Guevara, Shalini Moningi, Frank Hoebers, Hesham
Elhalawani, Benjamin H. Kann, Fallon E. Chipidza, Jonathan Leeman, Hugo
J.W.L. Aerts, Timothy Miller, Guergana K. Savova, Raymond H. Mak, Maryam
Lustberg, Majid Afshar, Danielle S. Bitterman
- Abstract summary: Documentation burden is a major contributor to clinician burnout.
Many hospitals are actively integrating such systems into electronic medical record systems.
We are the first to examine the utility of large language models in assisting clinicians draft responses to patient questions.
- Score: 4.243020918808522
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Documentation burden is a major contributor to clinician burnout, which is
rising nationally and is an urgent threat to our ability to care for patients.
Artificial intelligence (AI) chatbots, such as ChatGPT, could reduce clinician
burden by assisting with documentation. Although many hospitals are actively
integrating such systems into electronic medical record systems, AI chatbots
utility and impact on clinical decision-making have not been studied for this
intended use. We are the first to examine the utility of large language models
in assisting clinicians draft responses to patient questions. In our two-stage
cross-sectional study, 6 oncologists responded to 100 realistic synthetic
cancer patient scenarios and portal messages developed to reflect common
medical situations, first manually, then with AI assistance.
We find AI-assisted responses were longer, less readable, but provided
acceptable drafts without edits 58% of time. AI assistance improved efficiency
77% of time, with low harm risk (82% safe). However, 7.7% unedited AI responses
could severely harm. In 31% cases, physicians thought AI drafts were
human-written. AI assistance led to more patient education recommendations,
fewer clinical actions than manual responses. Results show promise for AI to
improve clinician efficiency and patient care through assisting documentation,
if used judiciously. Monitoring model outputs and human-AI interaction remains
crucial for safe implementation.
Related papers
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
We show the effects of performance pressure on AI advice reliance when laypeople complete a common AI-assisted task.
We find that when the stakes are high, people use AI advice more appropriately than when stakes are lower, regardless of the presence of an AI explanation.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - Improving Clinical Documentation with AI: A Comparative Study of Sporo AI Scribe and GPT-4o mini [0.0]
Sporo Health's AI scribe was evaluated against OpenAI's GPT-4o Mini.
Results show that Sporo AI consistently outperformed GPT-4o Mini, achieving higher recall, precision, and overall F1 scores.
arXiv Detail & Related papers (2024-10-20T22:48:40Z) - Intelligent Clinical Documentation: Harnessing Generative AI for Patient-Centric Clinical Note Generation [0.0]
This paper explores the potential of generative AI (Artificial Intelligence) to streamline the clinical documentation process.
We present a case study demonstrating the application of natural language processing (NLP) and automatic speech recognition (ASR) technologies to transcribe patient-clinician interactions.
The study highlights the benefits of this approach, including time savings, improved documentation quality, and enhanced patient-centered care.
arXiv Detail & Related papers (2024-05-28T16:43:41Z) - Explainable AI Enhances Glaucoma Referrals, Yet the Human-AI Team Still Falls Short of the AI Alone [6.740852152639975]
We investigate how various AI explanations help providers distinguish between patients needing immediate or non-urgent specialist referrals.
We built explainable AI algorithms to predict glaucoma surgery needs from routine eyecare data as a proxy for identifying high-risk patients.
We incorporated intrinsic and post-hoc explainability and conducted an online study with optometrists to assess human-AI team performance.
arXiv Detail & Related papers (2024-05-24T03:01:20Z) - A General-purpose AI Avatar in Healthcare [1.5081825869395544]
This paper focuses on the role of chatbots in healthcare and explores the use of avatars to make AI interactions more appealing to patients.
A framework of a general-purpose AI avatar application is demonstrated by using a three-category prompt dictionary and prompt improvement mechanism.
A two-phase approach is suggested to fine-tune a general-purpose AI language model and create different AI avatars to discuss medical issues with users.
arXiv Detail & Related papers (2024-01-10T03:44:15Z) - Understanding the Effect of Counterfactual Explanations on Trust and
Reliance on AI for Human-AI Collaborative Clinical Decision Making [5.381004207943597]
We conducted an experiment with seven therapists and ten laypersons on the task of assessing post-stroke survivors' quality of motion.
We analyzed their performance, agreement level on the task, and reliance on AI without and with two types of AI explanations.
Our work discusses the potential of counterfactual explanations to better estimate the accuracy of an AI model and reduce over-reliance on wrong' AI outputs.
arXiv Detail & Related papers (2023-08-08T16:23:46Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
We present a user-centered persona concept to evaluate explainable AI (XAI)
Results show that users' demographics and personality, as well as the type of explanation, impact explanation preferences.
Our insights bring an interactive, human-centered XAI closer to practical application.
arXiv Detail & Related papers (2022-10-07T12:51:27Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy:
Iterative Design and Evaluation with Therapists and Post-Stroke Survivors [66.07833535962762]
Artificial intelligence (AI) and robotic coaches promise the improved engagement of patients on rehabilitation exercises through social interaction.
Previous work explored the potential of automatically monitoring exercises for AI and robotic coaches, but deployment remains a challenge.
We present our efforts on eliciting the detailed design specifications on how AI and robotic coaches could interact with and guide patient's exercises.
arXiv Detail & Related papers (2021-06-15T22:06:39Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.