Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios
- URL: http://arxiv.org/abs/2411.14461v1
- Date: Sat, 16 Nov 2024 18:19:53 GMT
- Title: Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios
- Authors: Shaochen Xu, Yifan Zhou, Zhengliang Liu, Zihao Wu, Tianyang Zhong, Huaqin Zhao, Yiwei Li, Hanqi Jiang, Yi Pan, Junhao Chen, Jin Lu, Wei Zhang, Tuo Zhang, Lu Zhang, Dajiang Zhu, Xiang Li, Wei Liu, Quanzheng Li, Andrea Sikora, Xiaoming Zhai, Zhen Xiang, Tianming Liu,
- Abstract summary: We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.
Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
- Score: 46.729092855387165
- License:
- Abstract: Artificial Intelligence (AI) has become essential in modern healthcare, with large language models (LLMs) offering promising advances in clinical decision-making. Traditional model-based approaches, including those leveraging in-context demonstrations and those with specialized medical fine-tuning, have demonstrated strong performance in medical language processing but struggle with real-time adaptability, multi-step reasoning, and handling complex medical tasks. Agent-based AI systems address these limitations by incorporating reasoning traces, tool selection based on context, knowledge retrieval, and both short- and long-term memory. These additional features enable the medical AI agent to handle complex medical scenarios where decision-making should be built on real-time interaction with the environment. Therefore, unlike conventional model-based approaches that treat medical queries as isolated questions, medical AI agents approach them as complex tasks and behave more like human doctors. In this paper, we study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation. In particular, we consider the emergent o1 model and examine its impact on agents' reasoning, tool-use adaptability, and real-time information retrieval across diverse clinical scenarios, including high-stakes settings such as intensive care units (ICUs). Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools that support better patient outcomes and decision-making efficacy in clinical practice.
Related papers
- LLM-MedQA: Enhancing Medical Question Answering through Case Studies in Large Language Models [18.6994780408699]
Large Language Models (LLMs) face significant challenges in medical question answering.
We propose a novel approach incorporating similar case generation within a multi-agent medical question-answering system.
Our method capitalizes on the model's inherent medical knowledge and reasoning capabilities, eliminating the need for additional training data.
arXiv Detail & Related papers (2024-12-31T19:55:45Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
We present MedChain, a dataset of 12,163 clinical cases that covers five key stages of clinical workflow.
We also propose MedChain-Agent, an AI system that integrates a feedback mechanism and a MCase-RAG module to learn from previous cases and adapt its responses.
arXiv Detail & Related papers (2024-12-02T15:25:02Z) - Explainable Artificial Intelligence for Medical Applications: A Review [42.33274794442013]
This article reviews recent research grounded in explainable artificial intelligence (XAI)
It focuses on medical practices within the visual, audio, and multimodal perspectives.
We endeavour to categorise and synthesise these practices, aiming to provide support and guidance for future researchers and healthcare professionals.
arXiv Detail & Related papers (2024-11-15T11:31:06Z) - A Demonstration of Adaptive Collaboration of Large Language Models for Medical Decision-Making [38.2229221645303]
Large Language Models (LLMs) promise to streamline this process by synthesizing vast medical knowledge and multi-modal health data.
Our MDAgents address this need by dynamically assigning collaboration structures to LLMs based on task complexity.
This framework improves diagnostic accuracy and supports adaptive responses in complex, real-world medical scenarios.
arXiv Detail & Related papers (2024-10-31T22:58:08Z) - A Perspective for Adapting Generalist AI to Specialized Medical AI Applications and Their Challenges [33.20745682286796]
The integration of Large Language Models (LLMs) into medical applications has sparked widespread interest across the healthcare industry.
This perspective paper aims to discuss the inner workings of building LLM-powered medical AI applications.
arXiv Detail & Related papers (2024-10-28T22:30:06Z) - Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology [0.6397820821509177]
We introduce an alternative approach to multimodal medical AI that utilizes the generalist capabilities of a large language model (LLM) as a central reasoning engine.
This engine autonomously coordinates and deploys a set of specialized medical AI tools.
We show that the system has a high capability in employing appropriate tools (97%), drawing correct conclusions (93.6%), and providing complete (94%), and helpful (89.2%) recommendations for individual patient cases.
arXiv Detail & Related papers (2024-04-06T15:50:19Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.