論文の概要: Community Detection Guarantees Using Embeddings Learned by Node2Vec
- arxiv url: http://arxiv.org/abs/2310.17712v3
- Date: Tue, 22 Oct 2024 01:35:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:25:50.050918
- Title: Community Detection Guarantees Using Embeddings Learned by Node2Vec
- Title(参考訳): Node2Vecが学習した埋め込みを用いたコミュニティ検出保証
- Authors: Andrew Davison, S. Carlyle Morgan, Owen G. Ward,
- Abstract要約: node2vec が生成した埋め込みのクラスタリングは,ブロックモデルにおけるノードに対して,弱い一貫したコミュニティリカバリをもたらすことを示す。
また、これらの埋め込みをノードおよびリンク予測タスクに利用することについても論じる。
- 参考スコア(独自算出の注目度): 5.530212768657544
- License:
- Abstract: Embedding the nodes of a large network into an Euclidean space is a common objective in modern machine learning, with a variety of tools available. These embeddings can then be used as features for tasks such as community detection/node clustering or link prediction, where they achieve state of the art performance. With the exception of spectral clustering methods, there is little theoretical understanding for commonly used approaches to learning embeddings. In this work we examine the theoretical properties of the embeddings learned by node2vec. Our main result shows that the use of $k$-means clustering on the embedding vectors produced by node2vec gives weakly consistent community recovery for the nodes in (degree corrected) stochastic block models. We also discuss the use of these embeddings for node and link prediction tasks. We demonstrate this result empirically, and examine how this relates to other embedding tools for network data.
- Abstract(参考訳): 大規模なネットワークのノードをユークリッド空間に埋め込むことは、現代の機械学習において共通の目的であり、さまざまなツールが利用可能である。
これらの埋め込みは、コミュニティの検出/ノードクラスタリングやリンク予測といったタスクの機能として利用でき、最先端のパフォーマンスを達成することができる。
スペクトルクラスタリング法を除くと、埋め込みの学習によく使われる手法に関する理論的理解はほとんどない。
本研究では node2vec で学習した埋め込みの理論的性質について検討する。
本研究の主な成果は, node2vec が生成する埋め込みベクトルに$k$-means クラスタリングを使用することで, (次補正) 確率ブロックモデルにおけるノードのコミュニティリカバリが弱くなることである。
また、これらの埋め込みをノードおよびリンク予測タスクに利用することについても論じる。
この結果を実証的に実証し,ネットワークデータに対する他の埋め込みツールとの関係について検討する。
関連論文リスト
- Reliable Node Similarity Matrix Guided Contrastive Graph Clustering [51.23437296378319]
我々は、新しいフレームワーク、Reliable Node similarity Matrix Guided Contrastive Graph Clustering (NS4GC)を紹介した。
本手法は,ノード近傍のアライメントとセマンティック・アウェア・スパリフィケーションを導入し,ノード類似度行列が正確かつ効率的にスパースであることを保証する。
論文 参考訳(メタデータ) (2024-08-07T13:36:03Z) - EntailE: Introducing Textual Entailment in Commonsense Knowledge Graph
Completion [54.12709176438264]
Commonsense knowledge graph(CSKG)は、名前付きエンティティ、短いフレーズ、イベントをノードとして表現するために自由形式のテキストを使用する。
現在の手法では意味的類似性を利用してグラフ密度を増大させるが、ノードとその関係のセマンティックな妥当性は未探索である。
そこで本研究では,CSKGノード間の暗黙的な包絡関係を見つけるために,テキストエンテーメントを導入し,同じ概念クラス内のサブグラフ接続ノードを効果的に密度化することを提案する。
論文 参考訳(メタデータ) (2024-02-15T02:27:23Z) - NODDLE: Node2vec based deep learning model for link prediction [0.0]
我々はNODDLE(NOde2vec anD Deep Learning mEthodの統合)を提案する。
実験結果から, この手法は, 従来のソーシャル・ネットワーク・データセットの手法よりも優れた結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-25T18:43:52Z) - Fisher Information Embedding for Node and Graph Learning [5.263910852465186]
本稿では,グラフのための新しい注目型ノード埋め込みフレームワークを提案する。
我々のフレームワークはノード周辺のサブグラフの多重集合のための階層的カーネル上に構築されている。
埋め込みの一般化性と表現性に関する理論的知見を提供する。
論文 参考訳(メタデータ) (2023-05-12T16:15:30Z) - STERLING: Synergistic Representation Learning on Bipartite Graphs [78.86064828220613]
二部グラフ表現学習の基本的な課題は、ノードの埋め込みを抽出する方法である。
最近の二部グラフSSL法は、正ノード対と負ノード対を識別することによって埋め込みを学習する対照的な学習に基づいている。
負のノードペアを持たないノード埋め込みを学習するための新しい相乗的表現学習モデル(STERling)を提案する。
論文 参考訳(メタデータ) (2023-01-25T03:21:42Z) - Deep Embedded Clustering with Distribution Consistency Preservation for
Attributed Networks [15.895606627146291]
本研究では,属性ネットワークに対するエンドツーエンドの深層クラスタリングモデルを提案する。
グラフオートエンコーダとノード属性オートエンコーダを使用して、ノード表現とクラスタ割り当てをそれぞれ学習する。
提案手法は, 最先端手法と比較して, 性能が著しく向上する。
論文 参考訳(メタデータ) (2022-05-28T02:35:34Z) - Variational Co-embedding Learning for Attributed Network Clustering [30.7006907516984]
属性ネットワーククラスタリングの最近の研究は、グラフ畳み込みを利用してノード埋め込みを取得し、同時に埋め込み空間上でクラスタリング割り当てを行う。
属性ネットワーククラスタリング(ANC)のための分散共埋め込み学習モデルを提案する。
ANCは、ノードと属性を同時に埋め込む2つの変分自動エンコーダで構成されている。
論文 参考訳(メタデータ) (2021-04-15T08:11:47Z) - Variational Embeddings for Community Detection and Node Representation [5.197034517903854]
コミュニティ検出とノード表現のための変分埋め込みを共同学習するためのVECoDeRと呼ばれる効率的な生成モデルを提案する。
我々は、VECoDeRが3つのタスクすべてで多くの競合ベースラインを効果的に上回るいくつかのグラフデータセットを実証します。
論文 参考訳(メタデータ) (2021-01-11T13:36:29Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
今回提案するグラフネットワーク層であるNode2Seqは,隣接ノードの重みを明示的に調整可能なノード埋め込みを学習する。
対象ノードに対して,当手法は注意メカニズムを介して隣接ノードをソートし,さらに1D畳み込みニューラルネットワーク(CNN)を用いて情報集約のための明示的な重み付けを行う。
また, 特徴学習のための非局所的情報を, 注意スコアに基づいて適応的に組み込むことを提案する。
論文 参考訳(メタデータ) (2021-01-06T03:05:37Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
カーネル重み付けの観点からノード集約を再解釈する。
本稿では,アグリゲーション方式における特徴類似性を考慮したフレームワークを提案する。
特徴空間における特徴類似性をエンコードするために,元の隣り合うカーネルと学習可能なカーネルの合成として特徴集約を提案する。
論文 参考訳(メタデータ) (2020-05-16T04:44:29Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。