論文の概要: Machine Learning Infused Distributed Optimization for Coordinating Virtual Power Plant Assets
- arxiv url: http://arxiv.org/abs/2310.17882v2
- Date: Thu, 16 May 2024 15:43:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 19:24:18.918440
- Title: Machine Learning Infused Distributed Optimization for Coordinating Virtual Power Plant Assets
- Title(参考訳): 分散最適化による仮想プラントアセットのコーディネート
- Authors: Meiyi Li, Javad Mohammadi,
- Abstract要約: 本稿では,VPPアセットを調整するために,機械学習を利用した分散最適化を提案する。
提案手法はLOOP-MACと呼ばれ,各VPPエージェントが複数のDERを管理するマルチエージェントコーディネート・パースペクティブを採用している。
その結果, LOOP-MACの利点, 反復時間当たりの解の高速化, 収束時間を大幅に短縮した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Amid the increasing interest in the deployment of Distributed Energy Resources (DERs), the Virtual Power Plant (VPP) has emerged as a pivotal tool for aggregating diverse DERs and facilitating their participation in wholesale energy markets. These VPP deployments have been fueled by the Federal Energy Regulatory Commission's Order 2222, which makes DERs and VPPs competitive across market segments. However, the diversity and decentralized nature of DERs present significant challenges to the scalable coordination of VPP assets. To address efficiency and speed bottlenecks, this paper presents a novel machine learning-assisted distributed optimization to coordinate VPP assets. Our method, named LOOP-MAC(Learning to Optimize the Optimization Process for Multi-agent Coordination), adopts a multi-agent coordination perspective where each VPP agent manages multiple DERs and utilizes neural network approximators to expedite the solution search. The LOOP-MAC method employs a gauge map to guarantee strict compliance with local constraints, effectively reducing the need for additional post-processing steps. Our results highlight the advantages of LOOP-MAC, showcasing accelerated solution times per iteration and significantly reduced convergence times. The LOOP-MAC method outperforms conventional centralized and distributed optimization methods in optimization tasks that require repetitive and sequential execution.
- Abstract(参考訳): 分散エネルギー資源(DER)の展開への関心が高まっている中、仮想電力プラント(VPP)は多様なDERを集約し、エネルギー市場への参加を促進する重要なツールとして現れてきた。
これらのVPPの配備は連邦エネルギー規制委員会(Federal Energy Regulatory Commission)の2222条によって推進され、DERとVPPは市場セグメント間で競争力を持つようになった。
しかし、DERの多様性と分散性は、VPP資産のスケーラブルな調整に重大な課題をもたらす。
本稿では,VPPアセットをコーディネートするための,機械学習による分散最適化を提案する。
提案手法はLOOP-MAC (Learning to Optimize the Optimization Process for Multi-agent Coordination) と呼ばれ,各VPPエージェントが複数のDERを管理し,ニューラルネットワーク近似を用いて解探索を高速化する多エージェント協調の視点を採用している。
LOOP-MAC法は、局所的な制約に対する厳密なコンプライアンスを保証するためにゲージマップを使用し、追加の処理後ステップの必要性を効果的に低減する。
その結果, LOOP-MACの利点, 反復時間当たりの解の高速化, 収束時間を大幅に短縮した。
LOOP-MAC法は、繰り返しおよび逐次実行を必要とする最適化タスクにおいて、従来の集中的および分散的な最適化手法よりも優れている。
関連論文リスト
- Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
非直交多重アクセス(Noma)により、複数のユーザが同じ周波数帯域を共有でき、同時に再構成可能なインテリジェントサーフェス(STAR-RIS)を送信および反射することができる。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を提示する。
複数のアクセスポイント(AP)、STAR-RIS、NOMAを利用した新しいネットワークアーキテクチャが屋内通信のために提案されている。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - Multi-agent Reinforcement Learning for Energy Saving in Multi-Cell
Massive MIMO Systems [6.614630708703594]
マルチセルネットワークにおける基地局 (BS) の総エネルギー消費を最小化するマルチエージェント強化学習 (MARL) アルゴリズムを開発した。
トレーニングされたMAPPOエージェントは,基本方針よりも優れた性能を示すことを示す。
具体的には、オートスリープモード1のアルゴリズムと比較して、MAPPO隣のポリシーは低交通時間帯では消費電力を約8.7%削減し、高交通時間帯ではエネルギー効率を約19%向上させる。
論文 参考訳(メタデータ) (2024-02-05T17:15:00Z) - Computation Rate Maximization for Wireless Powered Edge Computing With Multi-User Cooperation [10.268239987867453]
本研究では,コンピュータユニットとIoT(Internet of Things)デバイスを備えたハイブリッドアクセスポイントを備えた,無線通信によるモバイルエッジコンピューティングシステムについて考察する。
本稿では,協調クラスタを動的に形成する計算性能を改善するための,新しいマルチユーザ協調方式を提案する。
具体的には、ネットワーク内のすべてのIoTデバイスの重み付け和計算率(WSCR)を最大化する。
論文 参考訳(メタデータ) (2024-01-22T05:22:19Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
エージェントが隣人としか通信できないネットワーク上での分散マルチレベル最適化の問題について検討する。
ネットワーク化されたエージェントが1つの時間スケールで異なるレベルの最適化問題を解くことができる新しいゴシップに基づく分散マルチレベル最適化アルゴリズムを提案する。
提案アルゴリズムは, ネットワークサイズと線形にスケーリングし, 各種アプリケーション上での最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-10T00:21:10Z) - Multi-Microgrid Collaborative Optimization Scheduling Using an Improved
Multi-Agent Soft Actor-Critic Algorithm [8.461537684562776]
マルチマイクログリッド (MMG) システムは、異なる操作実体に属する複数の再生可能エネルギーマイクログリッドで構成されている。
本稿では,マルチエージェント集中型分散実行フレームワークに基づくMMG協調最適化モデルを提案する。
論文 参考訳(メタデータ) (2023-04-01T22:44:52Z) - Distributed-Training-and-Execution Multi-Agent Reinforcement Learning
for Power Control in HetNet [48.96004919910818]
We propose a multi-agent Deep reinforcement learning (MADRL) based power control scheme for the HetNet。
エージェント間の協調を促進するために,MADRLシステムのためのペナルティベースQラーニング(PQL)アルゴリズムを開発した。
このように、エージェントのポリシーは、他のエージェントによってより容易に学習でき、より効率的なコラボレーションプロセスをもたらす。
論文 参考訳(メタデータ) (2022-12-15T17:01:56Z) - Towards Global Optimality in Cooperative MARL with the Transformation
And Distillation Framework [26.612749327414335]
分散実行は協調型マルチエージェント強化学習(MARL)における中核的要求である
本稿では,マルチエージェントポリシー勾配法と値分解法という,分散ポリシを用いた2つの一般的なアルゴリズムのクラスを理論的に解析する。
我々は,TAD-PPO が有限マルチエージェント MDP において最適政策学習を理論的に行うことができることを示す。
論文 参考訳(メタデータ) (2022-07-12T06:59:13Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
インテリジェント・リフレクション・サーフェス(IRS)は将来の無線ネットワークに広く応用されることが想定されている。
本稿では,エネルギー収穫能力を備えた協調型IRSデバイスを用いたマルチユーザ通信システムについて検討する。
論文 参考訳(メタデータ) (2022-03-26T20:37:14Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
本稿では,無人航空機(MUAV)搭載のIoT(Internet of Things)ネットワークについて検討する。
本稿では、インテリジェント反射面(IRS)を備えた充電可能な補助UAV(AUAV)を用いて、MUAVからの通信信号を強化することを提案する。
提案モデルでは,IoTネットワークの蓄積スループットを最大化するために,これらのエネルギー制限されたUAVの最適協調戦略について検討する。
論文 参考訳(メタデータ) (2021-12-20T15:45:28Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
強化学習 (Reinforcement Learning, RL) は, 意思決定および最適制御プロセスのための有望な解法として広く研究されている。
本稿では,Adaptive ADMM (asI-ADMM)アルゴリズムを提案する。
実験の結果,提案アルゴリズムは通信コストやスケーラビリティの観点から技術状況よりも優れており,複雑なIoT環境に適応できることがわかった。
論文 参考訳(メタデータ) (2021-06-30T16:49:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。