Developing a Multilingual Dataset and Evaluation Metrics for Code-Switching: A Focus on Hong Kong's Polylingual Dynamics
- URL: http://arxiv.org/abs/2310.17953v4
- Date: Sun, 02 Mar 2025 12:17:06 GMT
- Title: Developing a Multilingual Dataset and Evaluation Metrics for Code-Switching: A Focus on Hong Kong's Polylingual Dynamics
- Authors: Peng Xie, Kani Chen,
- Abstract summary: We develop a 34.8-hour dataset of Mixed Cantonese and English (MCE) audio using our Multi-Agent Data Generation Framework (MADGF)<n>We fine-tuned the open-source multilingual Automatic Speech Recognition (ASR) model, Whisper, with the MCE dataset, leading to impressive zero-shot performance.
- Score: 0.5700195008916903
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The existing audio datasets are predominantly tailored towards single languages, overlooking the complex linguistic behaviors of multilingual communities that engage in code-switching. This practice, where individuals frequently mix two or more languages in their daily interactions, is particularly prevalent in multilingual regions such as Hong Kong, China. To bridge this gap, we have developed a 34.8-hour dataset of Mixed Cantonese and English (MCE) audio using our Multi-Agent Data Generation Framework (MADGF). We fine-tuned the open-source multilingual Automatic Speech Recognition (ASR) model, Whisper, with the MCE dataset, leading to impressive zero-shot performance. The traditional metrics overlook important factors such as latency in real-world applications and code-switching scenarios. We have introduced a novel evaluation metric called Fidelity to the Original Audio, Accuracy, and Latency (FAL). This metric aims to overcome the limitations of traditional metrics used to assess ASR systems.
Related papers
- Improving Multilingual ASR in the Wild Using Simple N-best Re-ranking [68.77659513993507]
We present a simple and effective N-best re-ranking approach to improve multilingual ASR accuracy.
Our results show spoken language identification accuracy improvements of 8.7% and 6.1%, respectively, and word error rates which are 3.3% and 2.0% lower on these benchmarks.
arXiv Detail & Related papers (2024-09-27T03:31:32Z) - Enhancing Multilingual Speech Generation and Recognition Abilities in LLMs with Constructed Code-switched Data [30.966072545451183]
We propose a MutltiLingual MultiTask (MLMT) model, integrating multilingual speech generation and recognition tasks within the single LLM.
We develop an effective data construction approach that splits and equips words from different languages to equip synthesiss with CS ability without relying on CS data.
arXiv Detail & Related papers (2024-09-17T08:11:07Z) - Early Joint Learning of Emotion Information Makes MultiModal Model Understand You Better [9.378013909890374]
We present our solutions for emotion recognition in the sub-challenges of Multimodal Emotion Recognition Challenge (MER2024)
To mitigate the modal competition issue between audio and text, we adopt an early fusion strategy.
Our model ranks textbf2nd in both MER2024-SEMI and MER2024-NOISE, validating our method's effectiveness.
arXiv Detail & Related papers (2024-09-12T05:05:34Z) - Automatic Speech Recognition Advancements for Indigenous Languages of the Americas [0.0]
The Second Americas (Americas Natural Language Processing) Competition Track 1 of NeurIPS (Neural Information Processing Systems) 2022 proposed the task of training automatic speech recognition systems for five Indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa'ikhana.
We describe the fine-tuning of a state-of-the-art ASR model for each target language, using approximately 36.65 h of transcribed speech data from diverse sources enriched with data augmentation methods.
We release our best models for each language, marking the first open ASR models for Wa'ikhana and Kotiria.
arXiv Detail & Related papers (2024-04-12T10:12:38Z) - MLCA-AVSR: Multi-Layer Cross Attention Fusion based Audio-Visual Speech Recognition [62.89464258519723]
We propose a multi-layer cross-attention fusion based AVSR approach that promotes representation of each modality by fusing them at different levels of audio/visual encoders.
Our proposed approach surpasses the first-place system, establishing a new SOTA cpCER of 29.13% on this dataset.
arXiv Detail & Related papers (2024-01-07T08:59:32Z) - Speech collage: code-switched audio generation by collaging monolingual
corpora [50.356820349870986]
Speech Collage is a method that synthesizes CS data from monolingual corpora by splicing audio segments.
We investigate the impact of generated data on speech recognition in two scenarios.
arXiv Detail & Related papers (2023-09-27T14:17:53Z) - Transsion TSUP's speech recognition system for ASRU 2023 MADASR
Challenge [11.263392524468625]
The system focuses on adapting ASR models for low-resource Indian languages.
The proposed method achieved word error rates (WER) of 24.17%, 24.43%, 15.97%, and 15.97% for Bengali language in the four tracks, and WER of 19.61%, 19.54%, 15.48%, and 15.48% for Bhojpuri language in the four tracks.
arXiv Detail & Related papers (2023-07-20T00:55:01Z) - Cross-lingual Knowledge Transfer and Iterative Pseudo-labeling for
Low-Resource Speech Recognition with Transducers [6.017182111335404]
Cross-lingual knowledge transfer and iterative pseudo-labeling are two techniques that have been shown to be successful for improving the accuracy of ASR systems.
We show that the Transducer system trained using transcripts produced by the hybrid system achieves 18% reduction in terms of word error rate.
arXiv Detail & Related papers (2023-05-23T03:50:35Z) - XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented
Languages [105.54207724678767]
Data scarcity is a crucial issue for the development of highly multilingual NLP systems.
We propose XTREME-UP, a benchmark defined by its focus on the scarce-data scenario rather than zero-shot.
XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies.
arXiv Detail & Related papers (2023-05-19T18:00:03Z) - From English to More Languages: Parameter-Efficient Model Reprogramming
for Cross-Lingual Speech Recognition [50.93943755401025]
We propose a new parameter-efficient learning framework based on neural model reprogramming for cross-lingual speech recognition.
We design different auxiliary neural architectures focusing on learnable pre-trained feature enhancement.
Our methods outperform existing ASR tuning architectures and their extension with self-supervised losses.
arXiv Detail & Related papers (2023-01-19T02:37:56Z) - LAE: Language-Aware Encoder for Monolingual and Multilingual ASR [87.74794847245536]
A novel language-aware encoder (LAE) architecture is proposed to handle both situations by disentangling language-specific information.
Experiments conducted on Mandarin-English code-switched speech suggest that the proposed LAE is capable of discriminating different languages in frame-level.
arXiv Detail & Related papers (2022-06-05T04:03:12Z) - Adversarial synthesis based data-augmentation for code-switched spoken
language identification [0.0]
Spoken Language Identification (LID) is an important sub-task of Automatic Speech Recognition (ASR)
This study focuses on Indic language code-mixed with English.
Generative Adversarial Network (GAN) based data augmentation technique performed using Mel spectrograms for audio data.
arXiv Detail & Related papers (2022-05-30T06:41:13Z) - Multi2WOZ: A Robust Multilingual Dataset and Conversational Pretraining
for Task-Oriented Dialog [67.20796950016735]
Multi2WOZ dataset spans four typologically diverse languages: Chinese, German, Arabic, and Russian.
We introduce a new framework for multilingual conversational specialization of pretrained language models (PrLMs) that aims to facilitate cross-lingual transfer for arbitrary downstream TOD tasks.
Our experiments show that, in most setups, the best performance entails the combination of (I) conversational specialization in the target language and (ii) few-shot transfer for the concrete TOD task.
arXiv Detail & Related papers (2022-05-20T18:35:38Z) - Code Switched and Code Mixed Speech Recognition for Indic languages [0.0]
Training multilingual automatic speech recognition (ASR) systems is challenging because acoustic and lexical information is typically language specific.
We compare the performance of end to end multilingual speech recognition system to the performance of monolingual models conditioned on language identification (LID)
We also propose a similar technique to solve the Code Switched problem and achieve a WER of 21.77 and 28.27 over Hindi-English and Bengali-English respectively.
arXiv Detail & Related papers (2022-03-30T18:09:28Z) - Integrating Knowledge in End-to-End Automatic Speech Recognition for
Mandarin-English Code-Switching [41.88097793717185]
Code-Switching (CS) is a common linguistic phenomenon in multilingual communities.
This paper presents our investigations on end-to-end speech recognition for Mandarin-English CS speech.
arXiv Detail & Related papers (2021-12-19T17:31:15Z) - Improving Low-resource Reading Comprehension via Cross-lingual
Transposition Rethinking [0.9236074230806579]
Extractive Reading (ERC) has made tremendous advances enabled by the availability of large-scale high-quality ERC training data.
Despite of such rapid progress and widespread application, the datasets in languages other than high-resource languages such as English remain scarce.
We propose a Cross-Lingual Transposition ReThinking (XLTT) model by modelling existing high-quality extractive reading comprehension datasets in a multilingual environment.
arXiv Detail & Related papers (2021-07-11T09:35:16Z) - Multilingual and code-switching ASR challenges for low resource Indian
languages [59.2906853285309]
We focus on building multilingual and code-switching ASR systems through two different subtasks related to a total of seven Indian languages.
We provide a total of 600 hours of transcribed speech data, comprising train and test sets, in these languages.
We also provide a baseline recipe for both the tasks with a WER of 30.73% and 32.45% on the test sets of multilingual and code-switching subtasks, respectively.
arXiv Detail & Related papers (2021-04-01T03:37:01Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z) - How Phonotactics Affect Multilingual and Zero-shot ASR Performance [74.70048598292583]
A Transformer encoder-decoder model has been shown to leverage multilingual data well in IPA transcriptions of languages presented during training.
We replace the encoder-decoder with a hybrid ASR system consisting of a separate AM and LM.
We show that the gain from modeling crosslingual phonotactics is limited, and imposing a too strong model can hurt the zero-shot transfer.
arXiv Detail & Related papers (2020-10-22T23:07:24Z) - Multi-talker ASR for an unknown number of sources: Joint training of
source counting, separation and ASR [91.87500543591945]
We develop an end-to-end multi-talker automatic speech recognition system for an unknown number of active speakers.
Our experiments show very promising performance in counting accuracy, source separation and speech recognition.
Our system generalizes well to a larger number of speakers than it ever saw during training.
arXiv Detail & Related papers (2020-06-04T11:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.