Enhancing Multilingual Speech Generation and Recognition Abilities in LLMs with Constructed Code-switched Data
- URL: http://arxiv.org/abs/2409.10969v1
- Date: Tue, 17 Sep 2024 08:11:07 GMT
- Title: Enhancing Multilingual Speech Generation and Recognition Abilities in LLMs with Constructed Code-switched Data
- Authors: Jing Xu, Daxin Tan, Jiaqi Wang, Xiao Chen,
- Abstract summary: We propose a MutltiLingual MultiTask (MLMT) model, integrating multilingual speech generation and recognition tasks within the single LLM.
We develop an effective data construction approach that splits and equips words from different languages to equip synthesiss with CS ability without relying on CS data.
- Score: 30.966072545451183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While large language models (LLMs) have been explored in the speech domain for both generation and recognition tasks, their applications are predominantly confined to the monolingual scenario, with limited exploration in multilingual and code-switched (CS) contexts. Additionally, speech generation and recognition tasks are often handled separately, such as VALL-E and Qwen-Audio. In this paper, we propose a MutltiLingual MultiTask (MLMT) model, integrating multilingual speech generation and recognition tasks within the single LLM. Furthermore, we develop an effective data construction approach that splits and concatenates words from different languages to equip LLMs with CS synthesis ability without relying on CS data. The experimental results demonstrate that our model outperforms other baselines with a comparable data scale. Furthermore, our data construction approach not only equips LLMs with CS speech synthesis capability with comparable speaker consistency and similarity to any given speaker, but also improves the performance of LLMs in multilingual speech generation and recognition tasks.
Related papers
- Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)
We present a simple yet effective automatic process for creating speech-text pair data.
Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions [68.98811048970963]
We present a pioneering effort to investigate the capability of large language models (LLMs) in transcribing speech in multi-talker environments.
Our approach utilizes WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context.
Comprehensive experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios.
arXiv Detail & Related papers (2024-09-13T07:28:28Z) - Investigating Decoder-only Large Language Models for Speech-to-text Translation [39.17113782374464]
Large language models (LLMs) are known for their exceptional reasoning capabilities, generalizability, and fluency across diverse domains.
We propose a decoder-only architecture that enables the LLM to directly consume the encoded speech representation and generate the text translation.
Our model achieves state-of-the-art performance on CoVoST 2 and FLEURS among models trained without proprietary data.
arXiv Detail & Related papers (2024-07-03T14:42:49Z) - Teaching a Multilingual Large Language Model to Understand Multilingual Speech via Multi-Instructional Training [29.47243668154796]
BLOOMZMMS is a novel model that integrates a multilingual LLM with a multilingual speech encoder.
We demonstrate the transferability of linguistic knowledge from the text to the speech modality.
Our zero-shot evaluation results confirm the robustness of our approach across multiple tasks.
arXiv Detail & Related papers (2024-04-16T21:45:59Z) - Boosting Large Language Model for Speech Synthesis: An Empirical Study [86.89548753080432]
Large language models (LLMs) have made significant advancements in natural language processing and are concurrently extending the language ability to other modalities, such as speech and vision.
We conduct a comprehensive empirical exploration of boosting LLMs with the ability to generate speech, by combining pre-trained LLM LLaMA/OPT and text-to-speech synthesis model VALL-E.
We compare three integration methods between LLMs and speech models, including directly fine-tuned LLMs, superposed layers of LLMs and VALL-E, and coupled LLMs and VALL-E using LLMs as a powerful text encoder
arXiv Detail & Related papers (2023-12-30T14:20:04Z) - On decoder-only architecture for speech-to-text and large language model
integration [59.49886892602309]
Speech-LLaMA is a novel approach that effectively incorporates acoustic information into text-based large language models.
We conduct experiments on multilingual speech-to-text translation tasks and demonstrate a significant improvement over strong baselines.
arXiv Detail & Related papers (2023-07-08T06:47:58Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - Meta-Transfer Learning for Code-Switched Speech Recognition [72.84247387728999]
We propose a new learning method, meta-transfer learning, to transfer learn on a code-switched speech recognition system in a low-resource setting.
Our model learns to recognize individual languages, and transfer them so as to better recognize mixed-language speech by conditioning the optimization on the code-switching data.
arXiv Detail & Related papers (2020-04-29T14:27:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.