論文の概要: EcoLearn: Optimizing the Carbon Footprint of Federated Learning
- arxiv url: http://arxiv.org/abs/2310.17972v2
- Date: Sun, 18 May 2025 00:18:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 17:08:50.853907
- Title: EcoLearn: Optimizing the Carbon Footprint of Federated Learning
- Title(参考訳): EcoLearn: フェデレートラーニングのカーボンフットプリントの最適化
- Authors: Talha Mehboob, Noman Bashir, Jesus Omana Iglesias, Michael Zink, David Irwin,
- Abstract要約: Federated Learning (FL)は、データ転送オーバーヘッドを低減し、データのプライバシを保護するために、エッジデバイスに機械学習(ML)トレーニングを分散する。
FLモデルトレーニングは数百のデバイスにまたがる可能性がある。
FLのカーボンフットプリントを最小化するEcoLearnを設計し、モデル精度やトレーニング時間に大きな影響を与えない。
- 参考スコア(独自算出の注目度): 1.4257277178729617
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated Learning (FL) distributes machine learning (ML) training across edge devices to reduce data transfer overhead and protect data privacy. Since FL model training may span hundreds of devices and is thus resource- and energy-intensive, it has a significant carbon footprint. Importantly, since energy's carbon-intensity differs substantially (by up to 60$\times$) across locations, training on the same device using the same amount of energy, but at different locations, can incur widely different carbon emissions. While prior work has focused on improving FL's resource- and energy-efficiency by optimizing time-to-accuracy, it implicitly assumes all energy has the same carbon intensity and thus does not optimize carbon efficiency, i.e., work done per unit of carbon emitted. To address the problem, we design EcoLearn, which minimizes FL's carbon footprint without significantly affecting model accuracy or training time. EcoLearn achieves a favorable tradeoff by integrating carbon awareness into multiple aspects of FL training, including i) selecting clients with high data utility and low carbon, ii) provisioning more clients during the initial training rounds, and iii) mitigating stragglers by dynamically adjusting client over-provisioning based on carbon. We implement EcoLearn and its carbon-aware FL training policies in the Flower framework and show that it reduces the carbon footprint of training (by up to $10.8$$\times$) while maintaining model accuracy and training time (within $\sim$$1$\%) compared to state-of-the-art approaches.
- Abstract(参考訳): Federated Learning (FL)は、データ転送オーバーヘッドを低減し、データのプライバシを保護するために、エッジデバイスに機械学習(ML)トレーニングを分散する。
FLモデルトレーニングは数百のデバイスにまたがる可能性があるため、資源とエネルギーが集中しているため、かなりの炭素フットプリントを持つ。
重要なことは、エネルギーの炭素強度が場所によって大きく異なるため(60$\times$まで)、同じ量のエネルギーを使って同じデバイスでトレーニングするが、異なる場所では炭素排出量が広く異なる可能性がある。
以前の研究は、時間と精度を最適化することでFLの資源とエネルギー効率を改善することに重点を置いているが、すべてのエネルギーが同じ炭素強度を持つため、炭素効率、すなわち放出される炭素単位当たりの作業が最適化されないと暗黙的に仮定している。
この問題に対処するために,モデル精度やトレーニング時間に大きな影響を及ぼすことなく,FLの炭素フットプリントを最小限に抑えるEcoLearnを設計する。
EcoLearnは、炭素認識をFLトレーニングの複数の側面に統合することで、良好なトレードオフを達成する
一 高いデータ利用率及び低炭素のクライアントを選択すること。
二 初等訓練期間中に顧客を増員すること。
三 炭素に基づいてクライアントのオーバープロビジョンを動的に調整し、ストラグラーを緩和すること。
EcoLearnとそのカーボン対応FLトレーニングポリシーをFlowerフレームワークに実装し、トレーニングのカーボンフットプリント(最大10.8$\times$)を削減しつつ、モデルの精度とトレーニング時間($\sim$1$\%)を最先端のアプローチと比較して維持することを示した。
関連論文リスト
- SPEQ: Offline Stabilization Phases for Efficient Q-Learning in High Update-To-Data Ratio Reinforcement Learning [51.10866035483686]
強化学習(RL)における高アップデート・トゥ・データ(UTD)比のアルゴリズムは、サンプル効率を改善するが、高い計算コストを伴い、現実世界のスケーラビリティを制限している。
我々は、低UTDオンライントレーニングと周期的オフライン安定化フェーズを組み合わせたRLアルゴリズムである、効率的なQ-Learningのためのオフライン安定化フェーズ(SPEQ)を提案する。
これらのフェーズでは、Q-関数は固定されたリプレイバッファ上で高いUTD比で微調整され、サブ最適データの冗長な更新が削減される。
論文 参考訳(メタデータ) (2025-01-15T09:04:19Z) - Federated Learning with Workload Reduction through Partial Training of Client Models and Entropy-Based Data Selection [3.9981390090442694]
我々は,エッジデバイス上でのトレーニング負荷を削減するために,部分的クライアントモデルのファインチューニングとエントロピーベースのデータ選択を組み合わせた新しいアプローチであるFedFT-EDSを提案する。
実験の結果,FedFT-EDSは50%のユーザデータしか使用せず,ベースライン法,FedAvg,FedProxに比べてグローバルモデルの性能が向上していることがわかった。
FedFT-EDSは、クライアントでのトレーニング時間の3分の1を使用して、クライアントの学習効率を最大3倍改善する。
論文 参考訳(メタデータ) (2024-12-30T22:47:32Z) - Save It All: Enabling Full Parameter Tuning for Federated Large Language Models via Cycle Block Gradient Descent [15.463595798992621]
大規模言語モデル(LLM)はディープラーニングパラダイムに革命をもたらし、幅広いタスクで印象的な結果をもたらしている。
既存のソリューションは、モデル全体がトレーニングのために交換されるという非現実的な仮定を定めている。
本稿では,資源消費を最小限に抑えつつ,FLにおけるLLMの効率的なトレーニングと微調整を行う新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-17T03:49:44Z) - Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
各ユーザが事前に定義した機能であるユーティリティを導入し,BOのコストと性能のトレードオフについて述べる。
このアルゴリズムをLCデータセット上で検証した結果,従来のマルチファイルBOや転送BOベースラインよりも優れていた。
論文 参考訳(メタデータ) (2024-05-28T07:38:39Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
フェデレートラーニング(FL)は、分散データとの協調モデルトレーニングを可能にする、有望なパラダイムである。
LLM(Large Language Models)のトレーニングプロセスは一般的に重要なパラメータの更新を引き起こす。
本稿では,性能と効率を同時に向上する効率的な部分的プロンプトチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T16:37:59Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
生成的人工知能の最近の進歩は、機械学習トレーニングの需要が急増し、エネルギー消費の大幅な増加によるコスト負担と環境問題を引き起こしている。
地理的に分散したクラウドデータセンタ間でのトレーニングジョブのスケジューリングは、安価で低炭素エネルギーのコンピューティング能力の使用を最適化する機会を浮き彫りにする。
本研究では,実生活におけるワークロードパターン,エネルギー価格,炭素強度を組み込んだクラウドシステムと対話することで,マルチエージェント強化学習とアクタクリティカルな手法に基づく最適協調スケジューリング戦略の学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-17T02:12:30Z) - Green Federated Learning [7.003870178055125]
Federated Learning(FL)は、分散エンティティのデータを使用して集中型モデルをトレーニングする機械学習技術である。
FLは、多様なエネルギー源を持つ数億ものグローバル分散エンドユーザーデバイスを活用することができる。
提案するグリーンFLの概念は, FLパラメータを最適化し, 二酸化炭素排出量を最小化するための設計選択を行うものである。
論文 参考訳(メタデータ) (2023-03-26T02:23:38Z) - AnycostFL: Efficient On-Demand Federated Learning over Heterogeneous
Edge Devices [20.52519915112099]
我々はAny CostFLというコスト調整可能なFLフレームワークを提案し、多様なエッジデバイスがローカル更新を効率的に実行できるようにする。
実験結果から,我々の学習フレームワークは,適切なグローバルテスト精度を実現するために,トレーニング遅延とエネルギー消費の最大1.9倍の削減が可能であることが示唆された。
論文 参考訳(メタデータ) (2023-01-08T15:25:55Z) - ZeroFL: Efficient On-Device Training for Federated Learning with Local
Sparsity [15.908499928588297]
フェデレートラーニング(FL)では、ノードは従来のサーバグレードのハードウェアよりも桁違いに制約を受ける。
我々は、デバイス上でのトレーニングを加速するために、高度にスパースな操作に依存するZeroFLを提案する。
論文 参考訳(メタデータ) (2022-08-04T07:37:07Z) - Online Convolutional Re-parameterization [51.97831675242173]
2段階のパイプラインであるオンライン畳み込み再パラメータ化(OREPA)は、複雑なトレーニング時間ブロックを単一の畳み込みに絞ることで、巨大なトレーニングオーバーヘッドを低減することを目的としている。
最先端のre-paramモデルと比較して、OREPAはトレーニング時間のメモリコストを約70%削減し、トレーニング速度を約2倍向上させることができる。
また、オブジェクト検出とセマンティックセグメンテーションの実験を行い、下流タスクに一貫した改善を示す。
論文 参考訳(メタデータ) (2022-04-02T09:50:19Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
フェデレートラーニング(FL)は、グローバル機械学習モデルをトレーニングするためのソリューションを提供する。
FLは、クライアントデータの分散が非IIDであるときに性能劣化に悩まされる。
本稿では,この劣化に対処するために,新しい適応トレーニングアルゴリズムであるtextttAdaFL$を提案する。
論文 参考訳(メタデータ) (2021-08-12T14:18:05Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
本稿では,分散学習政策の環境フットプリントに影響を与える要因を概説し,分析する。
バニラとコンセンサスによって駆動される分散FLポリシーの両方をモデル化する。
その結果、flは低ビット/ジュール効率を特徴とするワイヤレスシステムにおいて、顕著なエンドツーエンドの省エネ(30%-40%)が可能となった。
論文 参考訳(メタデータ) (2021-03-18T16:04:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。