論文の概要: Image Clustering Conditioned on Text Criteria
- arxiv url: http://arxiv.org/abs/2310.18297v4
- Date: Thu, 22 Feb 2024 04:04:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-23 18:32:40.365035
- Title: Image Clustering Conditioned on Text Criteria
- Title(参考訳): テキスト基準に基づく画像クラスタリング
- Authors: Sehyun Kwon, Jaeseung Park, Minkyu Kim, Jaewoong Cho, Ernest K. Ryu,
Kangwook Lee
- Abstract要約: 本稿では,ユーザが指定したテキスト基準に基づいて画像クラスタリングを行う手法を提案する。
テキスト基準に基づく画像クラスタリング条件 (IC|TC) と呼ぶ。
IC|TCは人間の介入を最小限かつ実用的に必要としており、ユーザーはクラスタリングの結果に対してかなりの制御を行うことができる。
- 参考スコア(独自算出の注目度): 14.704110575570166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical clustering methods do not provide users with direct control of the
clustering results, and the clustering results may not be consistent with the
relevant criterion that a user has in mind. In this work, we present a new
methodology for performing image clustering based on user-specified text
criteria by leveraging modern vision-language models and large language models.
We call our method Image Clustering Conditioned on Text Criteria (IC|TC), and
it represents a different paradigm of image clustering. IC|TC requires a
minimal and practical degree of human intervention and grants the user
significant control over the clustering results in return. Our experiments show
that IC|TC can effectively cluster images with various criteria, such as human
action, physical location, or the person's mood, while significantly
outperforming baselines.
- Abstract(参考訳): 古典的なクラスタリング手法では,クラスタリング結果を直接制御することができず,クラスタリング結果がユーザの意識する関連する基準と一致しない場合がある。
本研究では,現代視覚言語モデルと大規模言語モデルを活用することで,ユーザ特定テキスト基準に基づく画像クラスタリングを行う手法を提案する。
提案手法は,テキスト基準(ic|tc)を条件とした画像クラスタリングと呼び,画像クラスタリングの異なるパラダイムを表す。
IC|TCは人間の介入を最小限かつ実用的に必要としており、ユーザーはクラスタリングの結果に対してかなりの制御を行うことができる。
実験の結果、IC|TCは、人間の行動、身体的位置、気分などの様々な基準で画像を効果的にクラスタリングし、ベースラインを大幅に上回っていることがわかった。
関連論文リスト
- Organizing Unstructured Image Collections using Natural Language [37.16101036513514]
本稿では,大規模な画像コレクションからクラスタリング基準を自動的に検出することを目的としたタスクセマンティック・マルチクラスタリング(SMC)を紹介する。
当社のフレームワークであるText Driven Semantic Multiple Clustering (TeDeSC)は,テキストをプロキシとして使用して,大規模なイメージコレクションを同時に推論する。
偏見の発見やソーシャルメディア画像の人気分析など,さまざまな応用にTeDeSCを適用した。
論文 参考訳(メタデータ) (2024-10-07T17:21:46Z) - Text-Guided Alternative Image Clustering [11.103514372355088]
この研究は、代替画像クラスタリングを容易にするために、大きな視覚言語モデルの可能性を探るものである。
本稿では,ユーザの興味をプロンプトを通じて活用する新たなアプローチとして,テキストガイドによる代替イメージコンセンサスクラスタリング(TGAICC)を提案する。
TGAICCは、4つの代替イメージクラスタリングベンチマークデータセットで画像とテキストベースのベースラインを上回っている。
論文 参考訳(メタデータ) (2024-06-07T08:37:57Z) - Rethinking cluster-conditioned diffusion models [1.597617022056624]
画像クラスタリングに関する個々のコンポーネントが3つのデータセット間の画像合成にどのように影響するかを明らかにする。
画像合成(視覚群)に関して最適なクラスタの粒度を考えると,クラスタコンディショニングは最先端のFIDを実現することができる。
本稿では,特徴に基づくクラスタリングのみを用いて,視覚群の探索空間を小さくする上層クラスタ境界を導出する手法を提案する。
論文 参考訳(メタデータ) (2024-03-01T14:47:46Z) - Image Clustering with External Guidance [33.664812922814754]
クラスタリングのコアは、監視信号を構築するために、事前の知識を取り入れている。
本稿では,クラスタリングを誘導する新たな監視信号として外部知識を活用することを提案する。
論文 参考訳(メタデータ) (2023-10-18T14:20:55Z) - CoC-GAN: Employing Context Cluster for Unveiling a New Pathway in Image
Generation [12.211795836214112]
本稿では,画像から一組の点雲へ変換する観点から,ユニークな画像生成プロセスを提案する。
我々の手法は、コンテキストクラスタリング(CoC)と呼ばれる単純なクラスタリング手法を利用して、順序のない点集合から画像を生成する。
我々は,このモデルをコンテキストクラスタリング生成適応ネットワーク(CoC-GAN)として導入する。
論文 参考訳(メタデータ) (2023-08-23T01:19:58Z) - On Mitigating Hard Clusters for Face Clustering [48.39472979642971]
顔クラスタリングは、大規模な未ラベルの顔画像を使用して顔認識システムをスケールアップするための有望な方法である。
我々はNDDe(Neighborhood-Diffusion-based Density)とTPDi(Transition-Probability-based Distance)の2つの新しいモジュールを紹介した。
複数のベンチマーク実験により,各モジュールが最終性能に寄与することが示された。
論文 参考訳(メタデータ) (2022-07-25T03:55:15Z) - Using Representation Expressiveness and Learnability to Evaluate
Self-Supervised Learning Methods [61.49061000562676]
本稿では,学習可能性を評価するためにCluster Learnability (CL)を導入する。
CLは、K-meansで表現をクラスタリングすることによって得られたラベルを予測するために訓練されたKNNのパフォーマンスで測定される。
CLは、他の競合する評価手法よりも分布内モデルの性能と相関することがわかった。
論文 参考訳(メタデータ) (2022-06-02T19:05:13Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
本稿では,共同表現学習とクラスタリングを組み合わせた画像クラスタリングのための新しいフレームワークを提案する。
提案手法は,様々な画像データセットにおける最先端の単一ステージクラスタリング手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-24T15:36:49Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Revisiting Contrastive Learning for Few-Shot Classification [74.78397993160583]
インスタンス識別に基づくコントラスト学習は,視覚表現の自己教師あり学習の指導的アプローチとして現れてきた。
本稿では,インスタンス識別に基づくコントラスト型自己教師付き学習フレームワークにおいて,新しいタスクを一般化する表現を学習する方法を示す。
提案手法は,cidを用いて訓練された普遍的埋め込みと組み合わせて,挑戦的メタデータセットベンチマークにおいて最先端アルゴリズムよりも優れる新しいモデル選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-26T19:58:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。