論文の概要: SQLformer: Deep Auto-Regressive Query Graph Generation for Text-to-SQL Translation
- arxiv url: http://arxiv.org/abs/2310.18376v4
- Date: Mon, 27 May 2024 17:55:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 10:35:18.116624
- Title: SQLformer: Deep Auto-Regressive Query Graph Generation for Text-to-SQL Translation
- Title(参考訳): SQLformer: テキストからSQLへの変換のためのディープ自動回帰クエリグラフ生成
- Authors: Adrián Bazaga, Pietro Liò, Gos Micklem,
- Abstract要約: 本稿では,テキストからテキストへの変換処理に特化して設計されたトランスフォーマーアーキテクチャを提案する。
我々のモデルは、実行可能層とデコーダ層に構造的帰納バイアスを組み込んで、クエリを自動で抽象構文木(AST)として予測する。
- 参考スコア(独自算出の注目度): 16.07396492960869
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the task of text-to-SQL translation, which converts natural language questions into executable SQL queries, has gained significant attention for its potential to democratize data access. Despite its promise, challenges such as adapting to unseen databases and aligning natural language with SQL syntax have hindered widespread adoption. To overcome these issues, we introduce SQLformer, a novel Transformer architecture specifically crafted to perform text-to-SQL translation tasks. Our model predicts SQL queries as abstract syntax trees (ASTs) in an autoregressive way, incorporating structural inductive bias in the encoder and decoder layers. This bias, guided by database table and column selection, aids the decoder in generating SQL query ASTs represented as graphs in a Breadth-First Search canonical order. Our experiments demonstrate that SQLformer achieves state-of-the-art performance across six prominent text-to-SQL benchmarks.
- Abstract(参考訳): 近年、自然言語の質問を実行可能なSQLクエリに変換するテキストからSQLへの変換タスクは、データアクセスの民主化の可能性に大きな注目を集めている。
その約束にもかかわらず、目に見えないデータベースへの適応や、自然言語とSQL構文の整合といった課題は、広く採用を妨げている。
これらの問題を克服するために、テキストからSQLへの変換タスクを実行するために特別に設計された、新しいTransformerアーキテクチャであるSQLformerを紹介します。
我々のモデルはSQLクエリを抽象構文木(AST)として自動回帰的に予測し、エンコーダ層とデコーダ層に構造的帰納バイアスを組み込む。
このバイアスは、データベーステーブルと列選択によってガイドされ、Breadth-First Searchの標準順序でグラフとして表されるSQLクエリASTを生成するデコーダに役立つ。
我々の実験は、SQLformerが6つの著名なテキスト-SQLベンチマークで最先端のパフォーマンスを達成することを示した。
関連論文リスト
- Retrieval-augmented GPT-3.5-based Text-to-SQL Framework with
Sample-aware Prompting and Dynamic Revision Chain [21.593701177605652]
サンプルと動的リビジョンチェーンを含むテキスト・ツー・アウェア・プロンプト・フレームワークを提案する。
提案手法は,質問項目のサンプルと詳細な情報を含む。
人間の介入なしに実行可能で正確なスクルを生成するために、我々は、きめ細かいフィードバックを反復的に適応する動的リビジョンチェーンを設計する。
論文 参考訳(メタデータ) (2023-07-11T07:16:22Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
テキスト・ツー・ドメイン・システムのためのUNIfiedベンチマークを導入する。
公開されているテキストからドメインへのデータセットと29Kデータベースで構成されている。
広く使われているSpiderベンチマークと比較すると、SQLパターンの3倍の増加が紹介されている。
論文 参考訳(メタデータ) (2023-05-25T17:19:52Z) - Prompting GPT-3.5 for Text-to-SQL with De-semanticization and Skeleton
Retrieval [17.747079214502673]
Text-to-は、自然言語の質問を構造化されたクエリ言語()に変換し、データベースから情報を取得するタスクである。
本稿では,テキスト・トゥ・テキストのための LLM ベースのフレームワークを提案する。
我々は,疑問骨格を抽出する非意味化機構を設計し,その構造的類似性に基づいて類似した例を検索する。
論文 参考訳(メタデータ) (2023-04-26T06:02:01Z) - Towards Generalizable and Robust Text-to-SQL Parsing [77.18724939989647]
本稿では,タスク分解,知識獲得,知識構成からなる新しいTKKフレームワークを提案する。
このフレームワークは,Spider,SParC,Co.データセット上でのすべてのシナリオと最先端のパフォーマンスに有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T09:21:27Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
テキストからコーパスへのパースの目的は、自然言語(NL)質問をデータベースが提供するエビデンスに基づいて、対応する構造化クエリ言語()に変換することである。
ディープニューラルネットワークは、入力NL質問から出力クエリへのマッピング関数を自動的に学習するニューラルジェネレーションモデルによって、このタスクを大幅に進歩させた。
論文 参考訳(メタデータ) (2022-08-29T14:24:13Z) - S$^2$SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder
for Text-to-SQL Parsers [66.78665327694625]
テキスト-関係解析のための質問-エンコーダグラフに構文を注入するS$2$を提案する。
また、疎結合制約を用いて多様なエッジ埋め込みを誘導し、ネットワークの性能をさらに向上させる。
スパイダーとロバスト性設定の実験は、提案手法が事前学習モデルを使用する場合、既存のすべての手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-03-14T09:49:15Z) - Weakly Supervised Text-to-SQL Parsing through Question Decomposition [53.22128541030441]
我々は最近提案されたQDMR(QDMR)という意味表現を活用している。
質問やQDMR構造(非専門家によって注釈付けされたり、自動予測されたりする)、回答が与えられたら、我々は自動的にsqlクエリを合成できる。
本結果は,NL-ベンチマークデータを用いて訓練したモデルと,弱い教師付きモデルが競合することを示す。
論文 参考訳(メタデータ) (2021-12-12T20:02:42Z) - Natural SQL: Making SQL Easier to Infer from Natural Language
Specifications [15.047104267689052]
我々はNatural SQL(Nat)と呼ばれるSQL中間表現を提案する。
挑戦的なテキスト・ツー・スキーマのベンチマークであるSpiderでは、Natが他のIRより優れており、以前のSOTAモデルの性能が大幅に向上することを示した。
実行可能生成をサポートしない既存のモデルでは、Natは実行可能クエリを容易に生成することができ、新しい最先端実行精度を実現する。
論文 参考訳(メタデータ) (2021-09-11T01:53:55Z) - Bertrand-DR: Improving Text-to-SQL using a Discriminative Re-ranker [1.049360126069332]
生成テキスト-リミモデルの性能向上を図るために,新しい離散型リランカを提案する。
テキスト・ト・リミモデルとリランカモデルの相対強度を最適性能として解析する。
本稿では,2つの最先端テキスト-リミモデルに適用することで,リランカの有効性を実証する。
論文 参考訳(メタデータ) (2020-02-03T04:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。