Percolation Theories for Quantum Networks
- URL: http://arxiv.org/abs/2310.18420v2
- Date: Sun, 19 Nov 2023 06:10:35 GMT
- Title: Percolation Theories for Quantum Networks
- Authors: Xiangyi Meng, Xinqi Hu, Yu Tian, Gaogao Dong, Renaud Lambiotte, Jianxi
Gao, Shlomo Havlin
- Abstract summary: Review paper discusses a fundamental question: how can entanglement be effectively and indirectly distributed between distant nodes in an imperfect quantum network?
We show that the classical percolation frameworks do not uniquely define the network's indirect connectivity.
This realization leads to the emergence of an alternative theory called concurrence percolation,'' which uncovers a previously unrecognized quantum advantage that emerges at large scales.
- Score: 5.004146855779428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum networks have experienced rapid advancements in both theoretical and
experimental domains over the last decade, making it increasingly important to
understand their large-scale features from the viewpoint of statistical
physics. This review paper discusses a fundamental question: how can
entanglement be effectively and indirectly (e.g., through intermediate nodes)
distributed between distant nodes in an imperfect quantum network, where the
connections are only partially entangled and subject to quantum noise? We
survey recent studies addressing this issue by drawing exact or approximate
mappings to percolation theory, a branch of statistical physics centered on
network connectivity. Notably, we show that the classical percolation
frameworks do not uniquely define the network's indirect connectivity. This
realization leads to the emergence of an alternative theory called
``concurrence percolation,'' which uncovers a previously unrecognized quantum
advantage that emerges at large scales, suggesting that quantum networks are
more resilient than initially assumed within classical percolation contexts,
offering refreshing insights into future quantum network design.
Related papers
- Experimental quantum triangle network nonlocality with an AlGaAs multiplexed entangled photon source [0.9092013845117769]
We show that quantum nonlocality without inputs can be demonstrated for sources with an arbitrarily small level of independence.
We use a simulated triangle network to violate experimentally for the first time a Bell-like inequality.
Our results allow us to deepen our understanding of network nonlocality while also pushing its practical relevance for quantum communication networks.
arXiv Detail & Related papers (2024-10-09T13:21:11Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum-enhanced metrology with network states [8.515162179098382]
We prove a general bound that limits the performance of using quantum network states to estimate a global parameter.
Our work establishes both the limitation and the possibility of quantum metrology within quantum networks.
arXiv Detail & Related papers (2023-07-15T09:46:35Z) - Hierarchical certification of nonclassical network correlations [50.32788626697182]
We derive linear and nonlinear Bell-like inequalities for networks, whose violation certifies the absence of a minimum number of classical sources in them.
We insert this assumption, which leads to results more amenable to certification in experiments.
arXiv Detail & Related papers (2023-06-27T18:00:01Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Bell nonlocality in networks [62.997667081978825]
Bell's theorem proves that quantum theory is inconsistent with local physical models.
In the last decade, the investigation of nonlocality has moved beyond Bell's theorem to consider more sophisticated experiments.
This review discusses the main concepts, methods, results and future challenges in the emerging topic of Bell nonlocality in networks.
arXiv Detail & Related papers (2021-04-21T18:00:48Z) - Concurrence Percolation in Quantum Networks [3.52359746858894]
We introduce a new statistical theory, concurrence percolation theory (ConPT)
We find that the entanglement transmission threshold predicted by ConPT is lower than the known classical-percolation-based results.
ConPT also shows a percolation-like universal critical behavior derived by finite-size analysis on the Bethe lattice.
arXiv Detail & Related papers (2021-03-25T17:14:48Z) - Quantum Network Discrimination [1.9036571490366496]
We study the discrimination of quantum networks and its fundamental limitations.
The simplest quantum network capturers the structure of the problem is given by a quantum superchannel.
We discuss achievability, symmetric network, the strong exponent to arbitrary quantum networks and finally an application to an active version of the quantum illumination problem.
arXiv Detail & Related papers (2021-03-03T13:54:24Z) - Quantum Entropic Causal Inference [30.939150842529052]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
arXiv Detail & Related papers (2021-02-23T15:51:34Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.