Bridging Distributionally Robust Learning and Offline RL: An Approach to
Mitigate Distribution Shift and Partial Data Coverage
- URL: http://arxiv.org/abs/2310.18434v1
- Date: Fri, 27 Oct 2023 19:19:30 GMT
- Title: Bridging Distributionally Robust Learning and Offline RL: An Approach to
Mitigate Distribution Shift and Partial Data Coverage
- Authors: Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, Mohammad Ghavamzadeh
- Abstract summary: offline reinforcement learning (RL) algorithms learn optimal polices using historical (offline) data.
One of the main challenges in offline RL is the distribution shift.
We propose two offline RL algorithms using the distributionally robust learning (DRL) framework.
- Score: 32.578787778183546
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The goal of an offline reinforcement learning (RL) algorithm is to learn
optimal polices using historical (offline) data, without access to the
environment for online exploration. One of the main challenges in offline RL is
the distribution shift which refers to the difference between the state-action
visitation distribution of the data generating policy and the learning policy.
Many recent works have used the idea of pessimism for developing offline RL
algorithms and characterizing their sample complexity under a relatively weak
assumption of single policy concentrability. Different from the offline RL
literature, the area of distributionally robust learning (DRL) offers a
principled framework that uses a minimax formulation to tackle model mismatch
between training and testing environments. In this work, we aim to bridge these
two areas by showing that the DRL approach can be used to tackle the
distributional shift problem in offline RL. In particular, we propose two
offline RL algorithms using the DRL framework, for the tabular and linear
function approximation settings, and characterize their sample complexity under
the single policy concentrability assumption. We also demonstrate the superior
performance our proposed algorithm through simulation experiments.
Related papers
- Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid
Reinforcement Learning [66.43003402281659]
A central question boils down to how to efficiently utilize online data collection to strengthen and complement the offline dataset.
We design a three-stage hybrid RL algorithm that beats the best of both worlds -- pure offline RL and pure online RL.
The proposed algorithm does not require any reward information during data collection.
arXiv Detail & Related papers (2023-05-17T15:17:23Z) - Offline Policy Optimization in RL with Variance Regularizaton [142.87345258222942]
We propose variance regularization for offline RL algorithms, using stationary distribution corrections.
We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer.
The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms.
arXiv Detail & Related papers (2022-12-29T18:25:01Z) - Revisiting the Linear-Programming Framework for Offline RL with General
Function Approximation [24.577243536475233]
offline reinforcement learning (RL) concerns pursuing an optimal policy for sequential decision-making from a pre-collected dataset.
Recent theoretical progress has focused on developing sample-efficient offline RL algorithms with various relaxed assumptions on data coverage and function approximators.
We revisit the linear-programming framework for offline RL, and advance the existing results in several aspects.
arXiv Detail & Related papers (2022-12-28T15:28:12Z) - Regularizing a Model-based Policy Stationary Distribution to Stabilize
Offline Reinforcement Learning [62.19209005400561]
offline reinforcement learning (RL) extends the paradigm of classical RL algorithms to purely learning from static datasets.
A key challenge of offline RL is the instability of policy training, caused by the mismatch between the distribution of the offline data and the undiscounted stationary state-action distribution of the learned policy.
We regularize the undiscounted stationary distribution of the current policy towards the offline data during the policy optimization process.
arXiv Detail & Related papers (2022-06-14T20:56:16Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
We present an offline reinforcement learning algorithm that prevents overestimation in a more principled way.
Our algorithm, OptiDICE, directly estimates the stationary distribution corrections of the optimal policy.
We show that OptiDICE performs competitively with the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-21T00:43:30Z) - Instabilities of Offline RL with Pre-Trained Neural Representation [127.89397629569808]
In offline reinforcement learning (RL), we seek to utilize offline data to evaluate (or learn) policies in scenarios where the data are collected from a distribution that substantially differs from that of the target policy to be evaluated.
Recent theoretical advances have shown that such sample-efficient offline RL is indeed possible provided certain strong representational conditions hold.
This work studies these issues from an empirical perspective to gauge how stable offline RL methods are.
arXiv Detail & Related papers (2021-03-08T18:06:44Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks.
This problem is still not fully understood, for which two major challenges need to be addressed.
We provide analysis and insight showing that some simple design choices can yield substantial improvements over recent approaches.
arXiv Detail & Related papers (2020-10-02T17:13:39Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.