Exploring Shape Embedding for Cloth-Changing Person Re-Identification
via 2D-3D Correspondences
- URL: http://arxiv.org/abs/2310.18438v1
- Date: Fri, 27 Oct 2023 19:26:30 GMT
- Title: Exploring Shape Embedding for Cloth-Changing Person Re-Identification
via 2D-3D Correspondences
- Authors: Yubin Wang, Huimin Yu, Yuming Yan, Shuyi Song, Biyang Liu, Yichong Lu
- Abstract summary: We propose a new shape embedding paradigm for cloth-changing ReID.
The shape embedding paradigm based on 2D-3D correspondences remarkably enhances the model's global understanding of human body shape.
To promote the study of ReID under clothing change, we construct 3D Dense Persons (DP3D), which is the first large-scale cloth-changing ReID dataset.
- Score: 9.487097819140653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cloth-Changing Person Re-Identification (CC-ReID) is a common and realistic
problem since fashion constantly changes over time and people's aesthetic
preferences are not set in stone. While most existing cloth-changing ReID
methods focus on learning cloth-agnostic identity representations from coarse
semantic cues (e.g. silhouettes and part segmentation maps), they neglect the
continuous shape distributions at the pixel level. In this paper, we propose
Continuous Surface Correspondence Learning (CSCL), a new shape embedding
paradigm for cloth-changing ReID. CSCL establishes continuous correspondences
between a 2D image plane and a canonical 3D body surface via pixel-to-vertex
classification, which naturally aligns a person image to the surface of a 3D
human model and simultaneously obtains pixel-wise surface embeddings. We
further extract fine-grained shape features from the learned surface embeddings
and then integrate them with global RGB features via a carefully designed
cross-modality fusion module. The shape embedding paradigm based on 2D-3D
correspondences remarkably enhances the model's global understanding of human
body shape. To promote the study of ReID under clothing change, we construct 3D
Dense Persons (DP3D), which is the first large-scale cloth-changing ReID
dataset that provides densely annotated 2D-3D correspondences and a precise 3D
mesh for each person image, while containing diverse cloth-changing cases over
all four seasons. Experiments on both cloth-changing and cloth-consistent ReID
benchmarks validate the effectiveness of our method.
Related papers
- ID-to-3D: Expressive ID-guided 3D Heads via Score Distillation Sampling [96.87575334960258]
ID-to-3D is a method to generate identity- and text-guided 3D human heads with disentangled expressions.
Results achieve an unprecedented level of identity-consistent and high-quality texture and geometry generation.
arXiv Detail & Related papers (2024-05-26T13:36:45Z) - SSR-2D: Semantic 3D Scene Reconstruction from 2D Images [54.46126685716471]
In this work, we explore a central 3D scene modeling task, namely, semantic scene reconstruction without using any 3D annotations.
The key idea of our approach is to design a trainable model that employs both incomplete 3D reconstructions and their corresponding source RGB-D images.
Our method achieves the state-of-the-art performance of semantic scene completion on two large-scale benchmark datasets MatterPort3D and ScanNet.
arXiv Detail & Related papers (2023-02-07T17:47:52Z) - Towards Hard-pose Virtual Try-on via 3D-aware Global Correspondence
Learning [70.75369367311897]
3D-aware global correspondences are reliable flows that jointly encode global semantic correlations, local deformations, and geometric priors of 3D human bodies.
An adversarial generator takes the garment warped by the 3D-aware flow, and the image of the target person as inputs, to synthesize the photo-realistic try-on result.
arXiv Detail & Related papers (2022-11-25T12:16:21Z) - Learning Canonical 3D Object Representation for Fine-Grained Recognition [77.33501114409036]
We propose a novel framework for fine-grained object recognition that learns to recover object variation in 3D space from a single image.
We represent an object as a composition of 3D shape and its appearance, while eliminating the effect of camera viewpoint.
By incorporating 3D shape and appearance jointly in a deep representation, our method learns the discriminative representation of the object.
arXiv Detail & Related papers (2021-08-10T12:19:34Z) - Detailed Avatar Recovery from Single Image [50.82102098057822]
This paper presents a novel framework to recover emphdetailed avatar from a single image.
We use the deep neural networks to refine the 3D shape in a Hierarchical Mesh Deformation framework.
Our method can restore detailed human body shapes with complete textures beyond skinned models.
arXiv Detail & Related papers (2021-08-06T03:51:26Z) - Fully Understanding Generic Objects: Modeling, Segmentation, and
Reconstruction [33.95791350070165]
Inferring 3D structure of a generic object from a 2D image is a long-standing objective of computer vision.
We take an alternative approach with semi-supervised learning. That is, for a 2D image of a generic object, we decompose it into latent representations of category, shape and albedo.
We show that the complete shape and albedo modeling enables us to leverage real 2D images in both modeling and model fitting.
arXiv Detail & Related papers (2021-04-02T02:39:29Z) - Learning 3D Human Shape and Pose from Dense Body Parts [117.46290013548533]
We propose a Decompose-and-aggregate Network (DaNet) to learn 3D human shape and pose from dense correspondences of body parts.
Messages from local streams are aggregated to enhance the robust prediction of the rotation-based poses.
Our method is validated on both indoor and real-world datasets including Human3.6M, UP3D, COCO, and 3DPW.
arXiv Detail & Related papers (2019-12-31T15:09:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.