Point cloud segmentation for 3D Clothed Human Layering
- URL: http://arxiv.org/abs/2508.05531v1
- Date: Thu, 07 Aug 2025 16:02:15 GMT
- Title: Point cloud segmentation for 3D Clothed Human Layering
- Authors: Davide Garavaso, Federico Masi, Pietro Musoni, Umberto Castellani,
- Abstract summary: 3D Cloth modeling and simulation is essential for avatars creation in several fields, such as fashion, entertainment, and animation.<n>We propose a new 3D point cloud segmentation paradigm where each 3D point can be simultaneously associated to different layers.<n>We create a new synthetic dataset that simulates very realistic 3D scans with the ground truth of the involved clothing layers.
- Score: 1.0074626918268836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D Cloth modeling and simulation is essential for avatars creation in several fields, such as fashion, entertainment, and animation. Achieving high-quality results is challenging due to the large variability of clothed body especially in the generation of realistic wrinkles. 3D scan acquisitions provide more accuracy in the representation of real-world objects but lack semantic information that can be inferred with a reliable semantic reconstruction pipeline. To this aim, shape segmentation plays a crucial role in identifying the semantic shape parts. However, current 3D shape segmentation methods are designed for scene understanding and interpretation and only few work is devoted to modeling. In the context of clothed body modeling the segmentation is a preliminary step for fully semantic shape parts reconstruction namely the underlying body and the involved garments. These parts represent several layers with strong overlap in contrast with standard segmentation methods that provide disjoint sets. In this work we propose a new 3D point cloud segmentation paradigm where each 3D point can be simultaneously associated to different layers. In this fashion we can estimate the underlying body parts and the unseen clothed regions, i.e., the part of a cloth occluded by the clothed-layer above. We name this segmentation paradigm clothed human layering. We create a new synthetic dataset that simulates very realistic 3D scans with the ground truth of the involved clothing layers. We propose and evaluate different neural network settings to deal with 3D clothing layering. We considered both coarse and fine grained per-layer garment identification. Our experiments demonstrates the benefit in introducing proper strategies for the segmentation on the garment domain on both the synthetic and real-world scan datasets.
Related papers
- GALA: Generating Animatable Layered Assets from a Single Scan [20.310367593475508]
We present GALA, a framework that takes as input a single-layer clothed 3D human mesh and decomposes it into complete multi-layered 3D assets.
The outputs can then be combined with other assets to create novel clothed human avatars with any pose.
arXiv Detail & Related papers (2024-01-23T18:59:59Z) - Exploring Shape Embedding for Cloth-Changing Person Re-Identification
via 2D-3D Correspondences [9.487097819140653]
We propose a new shape embedding paradigm for cloth-changing ReID.
The shape embedding paradigm based on 2D-3D correspondences remarkably enhances the model's global understanding of human body shape.
To promote the study of ReID under clothing change, we construct 3D Dense Persons (DP3D), which is the first large-scale cloth-changing ReID dataset.
arXiv Detail & Related papers (2023-10-27T19:26:30Z) - USR: Unsupervised Separated 3D Garment and Human Reconstruction via
Geometry and Semantic Consistency [41.89803177312638]
We propose an unsupervised separated 3D garments and human reconstruction model (USR), which reconstructs the human body and authentic textured clothes in layers without 3D models.
Our method proposes a generalized surface-aware neural radiance field to learn the mapping between sparse multi-view images and geometries of the dressed people.
arXiv Detail & Related papers (2023-02-21T08:48:27Z) - BodyMap: Learning Full-Body Dense Correspondence Map [19.13654133912062]
BodyMap is a new framework for obtaining high-definition full-body and continuous dense correspondence between in-the-wild images of humans and the surface of a 3D template model.
Dense correspondence between humans carries powerful semantic information that can be utilized to solve fundamental problems for full-body understanding.
arXiv Detail & Related papers (2022-05-18T17:58:11Z) - Towards 3D Scene Understanding by Referring Synthetic Models [65.74211112607315]
Methods typically alleviate on-extensive annotations on real scene scans.
We explore how synthetic models rely on real scene categories of synthetic features to a unified feature space.
Experiments show that our method achieves the average mAP of 46.08% on the ScanNet S3DIS dataset and 55.49% by learning datasets.
arXiv Detail & Related papers (2022-03-20T13:06:15Z) - Arbitrary Virtual Try-On Network: Characteristics Preservation and
Trade-off between Body and Clothing [85.74977256940855]
We propose an Arbitrary Virtual Try-On Network (AVTON) for all-type clothes.
AVTON can synthesize realistic try-on images by preserving and trading off characteristics of the target clothes and the reference person.
Our approach can achieve better performance compared with the state-of-the-art virtual try-on methods.
arXiv Detail & Related papers (2021-11-24T08:59:56Z) - The Power of Points for Modeling Humans in Clothing [60.00557674969284]
Currently it requires an artist to create 3D human avatars with realistic clothing that can move naturally.
We show that a 3D representation can capture varied topology at high resolution and that can be learned from data.
We train a neural network with a novel local clothing geometric feature to represent the shape of different outfits.
arXiv Detail & Related papers (2021-09-02T17:58:45Z) - Neural 3D Clothes Retargeting from a Single Image [91.5030622330039]
We present a method of clothes; generating the potential poses and deformations of a given 3D clothing template model to fit onto a person in a single RGB image.
The problem is fundamentally ill-posed as attaining the ground truth data is impossible, i.e. images of people wearing the different 3D clothing template model model at exact same pose.
We propose a semi-supervised learning framework that validates the physical plausibility of 3D deformation by matching with the prescribed body-to-cloth contact points and clothing to fit onto the unlabeled silhouette.
arXiv Detail & Related papers (2021-01-29T20:50:34Z) - 3DBooSTeR: 3D Body Shape and Texture Recovery [76.91542440942189]
3DBooSTeR is a novel method to recover a textured 3D body mesh from a partial 3D scan.
The proposed approach decouples the shape and texture completion into two sequential tasks.
arXiv Detail & Related papers (2020-10-23T21:07:59Z) - Combining Implicit Function Learning and Parametric Models for 3D Human
Reconstruction [123.62341095156611]
Implicit functions represented as deep learning approximations are powerful for reconstructing 3D surfaces.
Such features are essential in building flexible models for both computer graphics and computer vision.
We present methodology that combines detail-rich implicit functions and parametric representations.
arXiv Detail & Related papers (2020-07-22T13:46:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.