Fusion of the Power from Citations: Enhance your Influence by Integrating Information from References
- URL: http://arxiv.org/abs/2310.18451v2
- Date: Tue, 25 Jun 2024 18:29:18 GMT
- Title: Fusion of the Power from Citations: Enhance your Influence by Integrating Information from References
- Authors: Cong Qi, Qin Liu, Kan Liu,
- Abstract summary: This study aims to formulate the prediction problem to identify whether one paper can increase scholars' influence or not.
By applying the framework in this work, scholars can identify whether their papers can improve their influence in the future.
- Score: 3.607567777043649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Influence prediction plays a crucial role in the academic community. The amount of scholars' influence determines whether their work will be accepted by others. Most existing research focuses on predicting one paper's citation count after a period or identifying the most influential papers among the massive candidates, without concentrating on an individual paper's negative or positive impact on its authors. Thus, this study aims to formulate the prediction problem to identify whether one paper can increase scholars' influence or not, which can provide feedback to the authors before they publish their papers. First, we presented the self-adapted ACC (Average Annual Citation Counts) metric to measure authors' impact yearly based on their annual published papers, paper citation counts, and contributions in each paper. Then, we proposed the RD-GAT (Reference-Depth Graph Attention Network) model to integrate heterogeneous graph information from different depth of references by assigning attention coefficients on them. Experiments on AMiner dataset demonstrated that the proposed ACC metrics could represent the authors influence effectively, and the RD-GAT model is more efficiently on the academic citation network, and have stronger robustness against the overfitting problem compared with the baseline models. By applying the framework in this work, scholars can identify whether their papers can improve their influence in the future.
Related papers
- Position: AI/ML Influencers Have a Place in the Academic Process [82.2069685579588]
We investigate the role of social media influencers in enhancing the visibility of machine learning research.
We have compiled a comprehensive dataset of over 8,000 papers, spanning tweets from December 2018 to October 2023.
Our statistical and causal inference analysis reveals a significant increase in citations for papers endorsed by these influencers.
arXiv Detail & Related papers (2024-01-24T20:05:49Z) - Predicting Scientific Impact Through Diffusion, Conformity, and Contribution Disentanglement [11.684776349325887]
Existing models typically rely on static graphs for citation count estimation.
We introduce a novel model, DPPDCC, which Disentangles the Potential impacts of Papers into Diffusion, Conformity, and Contribution values.
arXiv Detail & Related papers (2023-11-15T07:21:11Z) - CausalCite: A Causal Formulation of Paper Citations [80.82622421055734]
CausalCite is a new way to measure the significance of a paper by assessing the causal impact of the paper on its follow-up papers.
It is based on a novel causal inference method, TextMatch, which adapts the traditional matching framework to high-dimensional text embeddings.
We demonstrate the effectiveness of CausalCite on various criteria, such as high correlation with paper impact as reported by scientific experts.
arXiv Detail & Related papers (2023-11-05T23:09:39Z) - Chain-of-Factors Paper-Reviewer Matching [32.86512592730291]
We propose a unified model for paper-reviewer matching that jointly considers semantic, topic, and citation factors.
We demonstrate the effectiveness of our proposed Chain-of-Factors model in comparison with state-of-the-art paper-reviewer matching methods and scientific pre-trained language models.
arXiv Detail & Related papers (2023-10-23T01:29:18Z) - Estimating the Causal Effect of Early ArXiving on Paper Acceptance [56.538813945721685]
We estimate the effect of arXiving a paper before the reviewing period (early arXiving) on its acceptance to the conference.
Our results suggest that early arXiving may have a small effect on a paper's chances of acceptance.
arXiv Detail & Related papers (2023-06-24T07:45:38Z) - H2CGL: Modeling Dynamics of Citation Network for Impact Prediction [13.00224680454585]
We construct hierarchical and heterogeneous graphs for target papers with an annual perspective.
The graphs can record the annual dynamics of target papers' scientific context information.
A novel graph neural network, Hierarchical and Heterogeneous Contrastive Graph Learning Model, is proposed.
arXiv Detail & Related papers (2023-04-16T13:04:32Z) - Tag-Aware Document Representation for Research Paper Recommendation [68.8204255655161]
We propose a hybrid approach that leverages deep semantic representation of research papers based on social tags assigned by users.
The proposed model is effective in recommending research papers even when the rating data is very sparse.
arXiv Detail & Related papers (2022-09-08T09:13:07Z) - Ranking Scientific Papers Using Preference Learning [48.78161994501516]
We cast it as a paper ranking problem based on peer review texts and reviewer scores.
We introduce a novel, multi-faceted generic evaluation framework for making final decisions based on peer reviews.
arXiv Detail & Related papers (2021-09-02T19:41:47Z) - Enhancing Scientific Papers Summarization with Citation Graph [78.65955304229863]
We redefine the task of scientific papers summarization by utilizing their citation graph.
We construct a novel scientific papers summarization dataset Semantic Scholar Network (SSN) which contains 141K research papers in different domains.
Our model can achieve competitive performance when compared with the pretrained models.
arXiv Detail & Related papers (2021-04-07T11:13:35Z) - Utilizing Citation Network Structure to Predict Citation Counts: A Deep
Learning Approach [0.0]
This paper proposes an end-to-end deep learning network, DeepCCP, which combines the effect of information cascade and looks at the citation counts prediction problem.
According to experiments on 6 real data sets, DeepCCP is superior to the state-of-the-art methods in terms of the accuracy of citation count prediction.
arXiv Detail & Related papers (2020-09-06T05:27:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.