Deep Intrinsic Decomposition with Adversarial Learning for Hyperspectral
Image Classification
- URL: http://arxiv.org/abs/2310.18549v1
- Date: Sat, 28 Oct 2023 00:41:25 GMT
- Title: Deep Intrinsic Decomposition with Adversarial Learning for Hyperspectral
Image Classification
- Authors: Zhiqiang Gong, Xian Zhou, Wen Yao
- Abstract summary: This work develops a novel deep intrinsic decomposition with adversarial learning, namely AdverDecom, for hyperspectral image classification.
A discriminative network is constructed to distinguish different environmental categories.
Experiments are conducted over three commonly used real-world datasets.
- Score: 9.051982753583232
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Convolutional neural networks (CNNs) have been demonstrated their powerful
ability to extract discriminative features for hyperspectral image
classification. However, general deep learning methods for CNNs ignore the
influence of complex environmental factor which enlarges the intra-class
variance and decreases the inter-class variance. This multiplies the difficulty
to extract discriminative features. To overcome this problem, this work
develops a novel deep intrinsic decomposition with adversarial learning, namely
AdverDecom, for hyperspectral image classification to mitigate the negative
impact of environmental factors on classification performance. First, we
develop a generative network for hyperspectral image (HyperNet) to extract the
environmental-related feature and category-related feature from the image.
Then, a discriminative network is constructed to distinguish different
environmental categories. Finally, a environmental and category joint learning
loss is developed for adversarial learning to make the deep model learn
discriminative features. Experiments are conducted over three commonly used
real-world datasets and the comparison results show the superiority of the
proposed method. The implementation of the proposed method and other compared
methods could be accessed at https://github.com/shendu-sw/Adversarial Learning
Intrinsic Decomposition for the sake of reproducibility.
Related papers
- Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - Discriminability-enforcing loss to improve representation learning [20.4701676109641]
We introduce a new loss term inspired by the Gini impurity to minimize the entropy of individual high-level features.
Although our Gini loss induces highly-discriminative features, it does not ensure that the distribution of the high-level features matches the distribution of the classes.
Our empirical results show that integrating our novel loss terms into the training objective consistently outperforms the models trained with cross-entropy alone.
arXiv Detail & Related papers (2022-02-14T22:31:37Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
We consider perturbations bounded by the $ell$--norm, which have been shown as effective attacks in the domains of image-recognition, natural language processing, and malware-detection.
We propose a novel defense method that consists of "truncation" and "adrial training"
Motivated by the insights we obtain, we extend these components to neural network classifiers.
arXiv Detail & Related papers (2022-01-23T21:18:17Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
We present a method for neural network interpretability by combining feature attribution with counterfactual explanations.
We show that this method can be used to quantitatively evaluate the performance of feature attribution methods in an objective manner.
arXiv Detail & Related papers (2021-09-28T00:53:34Z) - Enhancing Fine-Grained Classification for Low Resolution Images [97.82441158440527]
Low resolution images suffer from the inherent challenge of limited information content and the absence of fine details useful for sub-category classification.
This research proposes a novel attribute-assisted loss, which utilizes ancillary information to learn discriminative features for classification.
The proposed loss function enables a model to learn class-specific discriminative features, while incorporating attribute-level separability.
arXiv Detail & Related papers (2021-05-01T13:19:02Z) - Contrastive Learning based Hybrid Networks for Long-Tailed Image
Classification [31.647639786095993]
We propose a novel hybrid network structure composed of a supervised contrastive loss to learn image representations and a cross-entropy loss to learn classifiers.
Experiments on three long-tailed classification datasets demonstrate the advantage of the proposed contrastive learning based hybrid networks in long-tailed classification.
arXiv Detail & Related papers (2021-03-26T05:22:36Z) - Interpreting Deep Neural Networks with Relative Sectional Propagation by
Analyzing Comparative Gradients and Hostile Activations [37.11665902583138]
We propose a new attribution method, Relative Sectional Propagation (RSP), for decomposing the output predictions of Deep Neural Networks (DNNs)
We define hostile factor as an element that interferes with finding the attributions of the target and propagates it in a distinguishable way to overcome the non-suppressed nature of activated neurons.
Our method makes it possible to decompose the predictions of DNNs with clearer class-discriminativeness and detailed elucidations of activation neurons compared to the conventional attribution methods.
arXiv Detail & Related papers (2020-12-07T03:11:07Z) - Attention Model Enhanced Network for Classification of Breast Cancer
Image [54.83246945407568]
AMEN is formulated in a multi-branch fashion with pixel-wised attention model and classification submodular.
To focus more on subtle detail information, the sample image is enhanced by the pixel-wised attention map generated from former branch.
Experiments conducted on three benchmark datasets demonstrate the superiority of the proposed method under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:44:21Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
Deep Neural Networks (DNNs) are known to be vulnerable to adversarial attacks.
We propose a novel interpretability method, InterpretGAN, to generate explanations for features used for classification in latent variables.
We also design the first diagnostic method to quantify the vulnerability contributed by each layer.
arXiv Detail & Related papers (2020-07-17T01:56:28Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.