論文の概要: Large Language Models Are Better Adversaries: Exploring Generative
Clean-Label Backdoor Attacks Against Text Classifiers
- arxiv url: http://arxiv.org/abs/2310.18603v1
- Date: Sat, 28 Oct 2023 06:11:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 17:44:30.601292
- Title: Large Language Models Are Better Adversaries: Exploring Generative
Clean-Label Backdoor Attacks Against Text Classifiers
- Title(参考訳): 大規模言語モデルはより優れたアドバイザ - テキスト分類器に対するクリーンラベルバックドア生成攻撃を探求する
- Authors: Wencong You, Zayd Hammoudeh, Daniel Lowd
- Abstract要約: バックドア攻撃は、トレーニングとテストデータに無害なトリガーを挿入することで、モデル予測を操作する。
我々は、敵のトレーニング例を正しくラベル付けした、より現実的でより困難なクリーンラベル攻撃に焦点を当てる。
私たちの攻撃であるLLMBkdは言語モデルを利用して、さまざまなスタイルベースのトリガをテキストに自動的に挿入します。
- 参考スコア(独自算出の注目度): 25.94356063000699
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Backdoor attacks manipulate model predictions by inserting innocuous triggers
into training and test data. We focus on more realistic and more challenging
clean-label attacks where the adversarial training examples are correctly
labeled. Our attack, LLMBkd, leverages language models to automatically insert
diverse style-based triggers into texts. We also propose a poison selection
technique to improve the effectiveness of both LLMBkd as well as existing
textual backdoor attacks. Lastly, we describe REACT, a baseline defense to
mitigate backdoor attacks via antidote training examples. Our evaluations
demonstrate LLMBkd's effectiveness and efficiency, where we consistently
achieve high attack success rates across a wide range of styles with little
effort and no model training.
- Abstract(参考訳): バックドア攻撃は、トレーニングとテストデータに無害なトリガーを挿入することで、モデル予測を操作する。
我々は、敵のトレーニング例を正しくラベル付けした、より現実的でより困難なクリーンラベル攻撃に焦点を当てる。
私たちの攻撃であるLLMBkdは言語モデルを利用して、さまざまなスタイルベースのトリガをテキストに自動的に挿入します。
また,LLMBkdと既存のテキストバックドア攻撃の有効性を向上させるための毒素選択手法を提案する。
最後に、反ドートトレーニング例を通じてバックドア攻撃を軽減するためのベースラインディフェンスであるreactについて説明する。
私たちの評価は、llmbkdの有効性と効率を示し、モデルトレーニングなしで、幅広いスタイルで一貫して高い攻撃成功率を達成しています。
関連論文リスト
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - Wicked Oddities: Selectively Poisoning for Effective Clean-Label Backdoor Attacks [11.390175856652856]
クリーンラベル攻撃は、毒性のあるデータのラベルを変更することなく攻撃を行うことができる、よりステルスなバックドア攻撃である。
本研究は,攻撃成功率を高めるために,標的クラス内の少数の訓練サンプルを選択的に毒殺する方法について検討した。
私たちの脅威モデルは、サードパーティのデータセットで機械学習モデルをトレーニングする上で深刻な脅威となる。
論文 参考訳(メタデータ) (2024-07-15T15:38:21Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
現代のNLPモデルは、様々なソースから引き出された公開データセットでしばしば訓練される。
データ中毒攻撃は、攻撃者が設計した方法でモデルの振る舞いを操作できる。
バックドア攻撃に伴うリスクを軽減するために、いくつかの戦略が提案されている。
論文 参考訳(メタデータ) (2024-05-19T14:50:09Z) - Universal Vulnerabilities in Large Language Models: Backdoor Attacks for In-context Learning [14.011140902511135]
In-context Learningは、事前学習と微調整のギャップを埋めるパラダイムであり、いくつかのNLPタスクにおいて高い有効性を示している。
広く適用されているにもかかわらず、コンテキスト内学習は悪意のある攻撃に対して脆弱である。
我々は、コンテキスト内学習に基づく大規模言語モデルをターゲットに、ICLAttackという新しいバックドアアタック手法を設計する。
論文 参考訳(メタデータ) (2024-01-11T14:38:19Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - Attention-Enhancing Backdoor Attacks Against BERT-based Models [54.070555070629105]
バックドア攻撃の戦略を調べることは、モデルの脆弱性を理解するのに役立つだろう。
本稿では,注意パターンを直接操作することでトロイの木馬行動を向上させる新しいトロイの木馬注意損失(TAL)を提案する。
論文 参考訳(メタデータ) (2023-10-23T01:24:56Z) - Prompt as Triggers for Backdoor Attack: Examining the Vulnerability in
Language Models [41.1058288041033]
本稿では,プロンプトに基づくクリーンラベルバックドア攻撃の新規かつ効率的な方法であるProAttackを提案する。
本手法では, 外部からのトリガーを必要とせず, 汚染試料の正確なラベル付けを保証し, バックドア攻撃のステルス性を向上させる。
論文 参考訳(メタデータ) (2023-05-02T06:19:36Z) - BITE: Textual Backdoor Attacks with Iterative Trigger Injection [24.76186072273438]
バックドア攻撃はNLPシステムにとって新たな脅威となっている。
有害なトレーニングデータを提供することで、敵は被害者モデルに"バックドア"を埋め込むことができる。
ターゲットラベルと「トリガーワード」のセットとの間に強い相関関係を確立するため、トレーニングデータを害するバックドアアタックであるBITEを提案する。
論文 参考訳(メタデータ) (2022-05-25T11:58:38Z) - Narcissus: A Practical Clean-Label Backdoor Attack with Limited
Information [22.98039177091884]
クリーンラベル」バックドア攻撃には、トレーニングセット全体の知識が必要である。
本稿では,対象クラスの代表例の知識のみに基づいて,クリーンラベルバックドア攻撃をマウントするアルゴリズムを提案する。
私たちの攻撃は、物理的な世界にトリガーが存在する場合でも、データセットやモデル間でうまく機能します。
論文 参考訳(メタデータ) (2022-04-11T16:58:04Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
Emphbackdoor攻撃は、深層ニューラルネットワーク(DNN)に隠れたバックドアを埋め込み、トレーニングデータに毒を盛ることを目的としている。
我々は,対象ラベルを画像レベルではなくオブジェクトレベルから扱う,新たな攻撃パラダイムであるemphfine-fine-grained attackを提案する。
実験により、提案手法はわずかなトレーニングデータだけを毒殺することでセマンティックセグメンテーションモデルを攻撃することに成功した。
論文 参考訳(メタデータ) (2021-03-06T05:50:29Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。